Joint Crediting Mechanism Approved Methodology TH_AM015 "Introduction of High Efficiency Electrolyzer in Caustic Soda Production Plant"

A. Title of the methodology

Introduction of High Efficiency Electrolyzer in Caustic Soda Production Plant, Version 01.0

B. Terms and definitions

Terms	Definitions
Electrolyzer	An equipment used for the electrolysis of sodium chloride
	solution, composed of an anode chamber, anode, cathode
	chamber, cathode, and an ion exchange membrane.
Ion-exchange membrane	Method for the electrolysis of sodium chloride solution
(IEM) technology	separating the cathode and anode chambers, in which a
	cation exchange membrane possesses special properties that
	permit only transmission of cations (positive ions) not of
	anions (negative ions).
Bipolar electrolyzer	Electrolyzer in which the elements are connected in series
	and the power supply is connected only to the end part of the
	electrolyzer.

C. Summary of the methodology

Items		Summary
GHG emission r	reduction	Installing ion-exchange membrane electrolyzer, which reduces
measures		electricity resistance of the electrolyzer unit and achieves power
		consumption reduction in the caustic soda process. This
		methodology applies to the project that introduces high
		efficiency electrolyzer in caustic soda production plant.
Calculation of r	reference	Reference emissions are GHG emissions from using reference
emissions		electrolyzer, calculated with power consumption of project
		electrolyzer, ratio of the performance guaranteed values of

	specific power consumptions (SECs) of reference/project	
	electrolyzers and CO ₂ emission factor for consumed electricity.	
Calculation of project	Project emissions are GHG emissions from using project	
emissions	electrolyzer, calculated with power consumption of project	
	electrolyzer and CO ₂ emission factor for electricity consumed.	
Monitoring parameters	Power consumption of project electrolyzer	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	Bipolar electrolyzer(s), which employs an ion-exchange membrane technology,		
	is installed in the manufacturing process of caustic soda.		
Criterion 2	SEC value of project electrolyzer ur	der the standard conditions, 32% NaOH	
	and 90 degrees Celsius is less than the	reshold SEC value set in the table below	
	under the standard conditions, 32% N	aOH and 90 degrees Celsius;	
	CD (Current density) [kA/m ²]	Threshold SEC value of the	
		electrolyzer [kWh (DC)/t-NaOH]	
	$4.0 \le CD < 4.5$	2,013	
	$4.5 \le CD < 5.0$	2,038	
	$5.0 \le CD < 5.5$ 2,061		
	$5.5 \le CD < 6.0$ 2,086		
	$6.0 \le CD < 6.5$	2,110	
		<u> </u>	
	SEC value of project electrolyzer is derived from performance guaranteed value		
	provided by manufacturer.		

E. Emission Sources and GHG types

Reference emissions		
Emission sources GHG types		
Power consumption of reference electrolyzer CO ₂		
Project emissions		
Emission sources GHG types		
Power consumption of project electrolyzer	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project electrolyzer and ratio of SEC values of reference/project electrolyzer, and CO_2 emission factor for consumed electricity. The SEC value of reference electrolyzer is conservatively set as a default value in the following manner to ensure net emission reductions.

All electrolyzers in the caustic soda process in Japan employ ion-exchange membrane technology, and the average of SEC values of the electrolyzers is 2,364 kWh (DC)/t-NaOH (Japan Soda Industry Association, 2016).

The range of averaged SEC values of the bipolar electrolyzers in EU is from 2,191 kWh (DC)/t-NaOH to 2,236 kWh (DC)/t-NaOH based on the document "Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali, 2014" by assuming general AC/DC efficiency of 96% to 98% (European Commission, 2014).

The performance guaranteed values of SECs of possible model of bipolar electrolyzer available in Thailand were collected and averaged within the same CD ranges as those in the abovementioned document by European Commission (2.9 kA/m² to 5.4 kA/m²). Accordingly, the averaged SEC value is calculated as 1,999 kWh (DC)/t-NaOH.

As a result, it is considered that the possible model of bipolar electrolyzer which is available in the country has comparable efficiency advantage as it has the lower SEC value than that of electrolyzers reported in the document published in EU. Hence it is determined to be the reference electrolyzer.

In order to make it comparable, the SEC values of reference and project electrolyzers are both based on performance guarantee.

Considering the fact that SEC values are positively correlated with CD, the reference SEC values are set into five range of CDs. The SEC values of the reference electrolyzer are determined as 2,013, 2,038, 2,061, 2,086 and 2,110 kWh (DC)/t-NaOH corresponding to the range of CDs of 4.0, 4.5, 5.0, 5.5 and 6.0 kA/m² respectively.

F.2. Calculation of reference emissions

REp	$=\sum_{i}$	$\sum EC_{RE,i,p} \times EF_{elec} = \sum_{i} \left(EC_{PJ,i,p} \times \frac{SEC_{RE,i}}{SEC_{PJ,i}} \right) \times EF_{elec}$
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
$EC_{RE,i,p}$:	Power consumption of the reference electrolyzer i during the period p [MWh/p]
$EC_{PJ,i,p}$:	Power consumption of the project electrolyzer i during the period p [MWh/p]
$SEC_{RE,i}$:	SEC value of the reference electrolyzer <i>i</i> [kWh(DC)/t-NaOH]
$SEC_{PJ,i}$:	SEC value of the project electrolyzer <i>i</i> [kWh(DC)/t-NaOH]
EF_{elec}	:	CO2 emission factor for consumed electricity [tCO2/MWh]
i	:	Identification number of project electrolyzer [-]

G. Calculation of project emissions

$PE_p = \sum_i EC_{PJ,i,p} \times EF_{elec}$		
PE_p	:	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$:	Power consumption of the project electrolyzer <i>i</i> during the
		period p [MWh/p]
EF_{elec}	:	CO2 emission factor for consumed electricity [tCO2/MWh]
i	:	Identification number of project electrolyzer [-]

H. Calculation of emissions reductions

$$ER_p = RE_p - PE_p$$

ER_p	:	Emission reductions during the period p [tCO ₂ /p]
RE_p	:	Reference emissions during the period p [tCO ₂ /p]
PE_p	:	Project emissions during the period $p [tCO_2/p]$

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data Source			
$SEC_{RE,i}$	SEC value of the reference electrolyzer <i>i</i> [kWh			Additional information
	(DC)/t-NaOH].			The default values are
	The default value is set by the following table.			derived from the
	CD [kA/m ²]	SEC value of the		value of possible model
	corresponding to	reference		electrolyzer available in
	SEC performance	electrolyzer [kWh		Thailand.
	guarantee of the	(DC)/t-NaOH]		The $SEC_{RE,i}$ should be
	project electrolyzer			revised if necessary from
	$4.0 \le CD < 4.5$	2,013		survey result which is
	$4.5 \le CD < 5.0$	2,038		conducted by the Joint
	$5.0 \le CD < 5.5$	2,061		Committee or project
	$5.5 \le CD < 6.0$	2,086		participants.
	$6.0 \le CD < 6.5$	2,110		
SEC _{PJ,i}	SEC value of the project	et electrolyzer <i>i</i>		Performance guaranteed
	[kWh(DC)/t-NaOH].		value provided by	
				manufacturer of the project
				electrolyzer.
EF _{elec}	CO ₂ emission factor	for consumed electr	ricity	Case 1)
	[tCO ₂ /MWh].			[Grid electricity]
	When the project electrolyzer consumes only 1			The most recent value
	grid electricity, 2) captive electricity or 3)			available at the time of
	electricity directly supplied from other sources			validation is applied and
	(e.g. independent power producer (IPP), small			fixed for the monitoring
	power producer (SPP) and very small power			period thereafter. The data is
	producer (VSPP)) to the project site, the project			sourced from "Grid
	participant applies the CO ₂ emission factor			Emission Factor (GEF) of
	respectively.			Thailand", endorsed by
	When the project ele	ectrolyzer may cons	sume	Thailand Greenhouse Gas
	electricity supplied fro	om more than 1 ele	ectric	Management Organization
	source, the project par	rticipant applies the	CO_2	(TGO) unless otherwise
	emission factor with the lowest value.			instructed by the Joint

	Committee.
[CO ₂ emission factor]	
Case 1) Grid electricity	Case 2)
The most recent value available from the source	[Captive electricity]
stated in this table at the time of validation	For Option a)
	Specification of the captive
Case 2) Captive electricity including	power generation system
cogeneration system	provided by the
EF_{elec} is determined based on the following	manufacturer (η_{elec} [%]).
options:	CO ₂ emission factor of the
a) <u>Calculated from its power generation</u>	fossil fuel type used in the
efficiency (η_{elec} [%]) obtained from	captive power generation
manufacturer's specification.	system (EF_{fuel} [tCO ₂ /GJ])
The power generation efficiency based on lower	
heating value (LHV) of the captive power	For Option b)
generation system from the manufacturer's	Generated and supplied
specification is applied;	power generation system
$FF = 2.6 \times \frac{100}{5} \times FF$	$(EG_{PJ,p} [MWh/p]).$
$EI_{gen} = 3.0 \times \frac{\eta_{elec}}{\eta_{elec}}$	Fuel amount consumed by
	system (FC_{PLR}) [mass or
b) Calculated from measured data	volume/p]).
The power generation efficiency calculated from	Net calorific value (NCV _{fuel}
monitored data of the amount of fuel input for	[GJ/mass or volume]) and
power generation $(\mathit{FC}_{\mathit{PJ},p})$ and the amount of	CO ₂ emission factor of the
electricity generated $(EG_{PJ,p})$ during the period p	fuel $(EF_{fuel} [tCO_2/GJ])$ in
is applied. The measurement is conducted with	order of preference:
the monitoring equipment to which calibration	1) values provided by the
certificate is issued by an entity accredited under	fuel supplier;
national/international standards;	2) measurement by the
$FF_{1} = FC_{2} \times NCV_{c} \times FF_{c} \times \frac{1}{1}$	project participants;
$EI_{elec} = IC_{PJ,p} \times IVCV_{fuel} \times EI_{fuel} \times EG_{PJ,p}$	3) regional or national
Where:	default values;
<i>NCV_{fuel}</i> : Net calorific value of consumed	4) IPCC default values
fuel [GJ/mass or volume]	provided in tables 1.2 and 1.4
	of Ch.1 Vol.2 of 2006 IPCC
Note:	Guidelines on National GHG
In case the captive electricity generation system	Inventories. Lower value is

meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8 *1	0.46 *2

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO₂ emission factor for natural gas (0.0543tCO₂/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.

Case 3) Electricity directly supplied from other sources including cogeneration system

 EF_{elec} is determined based on the following options:

a) The value provided by the electricity supplier with the evidence;

b) The value calculated in the same manner for the option a) of 2) captive electricity as instructed above;

c) The value calculated in the same manner for the option b) of 2) captive electricity as instructed above;

When the project electrolyzer may consume electricity supplied from more than 1 electric source, the project participant applies the CO₂ emission factor with the lowest value. applied.

[Captive electricity with diesel fuel] CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.

CDM Methodological tool "Determining the baseline efficiency of thermal or electric energy generation systems version 02.0" for the default efficiency for offgrid power plants.

Case 3)

[Electricity directly supplied from other sources including cogeneration system] For Option a)

The evidence stating information relevant to the value of emission factor (e.g. data of power generation, type of power plant, type of fossil fuel, period of time).

History of the document

Version	Date	Contents revised
01.0	20 September 2021	Electronic decision by the Joint Committee
		Initial approval.