Joint Crediting Mechanism Approved Methodology TH_AM013 "Energy Saving by Introduction of High Efficiency Screw Chiller for freezing and refrigeration"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Screw Chiller for freezing and refrigeration, Ver.01.0

B. Terms and definitions

Terms	Definitions				
Screw chiller	Screw chiller is a cooling and refrigeration machine				
	utilizing a vapor compression refrigeration cycle equipped				
	with screw type compressor, a condenser, an expansion				
	valve and an evaporator in one unit.				
	Assembly of compressor, condenser, expansion valve and				
	evaporator with interconnections, is defined as one module.				
	As for products of screw chiller, there are the type of single				
	module and multiple modules in one unit.				
	This methodology is applicable to a unit of multiple				
	modules as well as the one of single module.				
Cooling capacity	Cooling capacity is the capability of individual chiller to				
	remove heat. In this methodology, "cooling capacity" is				
	used to represent a cooling capacity per one individual				
	chiller unit and not to represent package units which consist				
	of multiple screw chillers.				
Periodical check	Periodical check is a periodical investigation of screw				
	chiller(s) done by manufacturer or agent who is authorized				
	by the manufacturer, in order to maintain screw chiller(s)				
	performance.				

C. Summary of the methodology

Items	Summary		
GHG emission reduction	This methodology applies to the project that aims for saving		
measures	energy by introducing high efficiency chiller(s).		
Calculation of reference	Reference emissions are GHG emissions from the usage of		
emissions	reference chiller unit, calculated by using data of power		
	consumption of project screw chiller(s), ratio of COPs		
	(Coefficient of Performance) of reference/project screw chiller		
	and CO ₂ emission factor for consumed electricity.		
Calculation of project	Project emissions are GHG emissions from the usage of screw		
emissions	chiller(s), calculated with power consumption of screw		
	chiller(s) and CO ₂ emission factor for consumed electricity.		
Monitoring parameters	• Power consumption of project screw chiller		
	• Amount of fuel consumed and amount of electricity		
	generated by captive power, where applicable.		

D. Eligibility	v criteria			
This methodology is applicable to projects that satisfy all of the following criteria.				
Criterion 1	The project installs brine screw chiller(s) for freezing and refrigeration.			
	Cooling capacity of a screw chiller per one module is less than or equals to			
	1,000 kW.			
Criteria 2	COP for project screw chiller(s) calculated under the standardizing temperature			
	conditions ($COP_{PJ,tc,i}$) is more than COP of the reference screw chiller, with the			
	cooling capacity range same as the project screw chiller.			
	[equation to calculate COP _{PJ,tc,i}]			
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(TC_{cooling-out,i} - TC_{chilled-out,i} + TD_{chilled})]$			
	+ $TD_{cooling}$) ÷ (37 - 7 + $TD_{chilled}$ + $TD_{cooling}$)]			
	$COP_{PJ,tc,i}$: COP of project screw chiller <i>i</i> calculated under the			
	standardizing temperature conditions* [-]			
	$COP_{PJ,i}$: COP of project screw chiller <i>i</i> under the catalog			
	conditions of the project screw chiller [-]			
	TC _{cooling-out,i} : Output cooling water temperature of project screw			
	chiller <i>i</i> set under the catalog conditions of the project			
	screw chiller [degree Celsius]			
	TC _{chilled-out,i} : Output chilled water temperature of project screw			
	chiller <i>i</i> set under the catalog conditions of the project			

	screw chiller [degree Celsius]			
	temperature of refrigerant and output cooling water			
	temperature, 1.5 degree Celsius set as a default value			
	[degree Celsius]			
	TD _{chilled} : Temperature difference between evaporating			
	temperature of refrigerant and output chilled water			
	temperature, 1.5 degree Celsius set as a default value			
	[degree Celsius]			
	The standardizing temperature conditions at which COP for project screw			
	chiller(s) calculated in this methodology are shown below:			
	Chilled water : output 7 degrees Celsius			
	input 12 degrees Celsius			
	Cooling water : output 37 degrees Celsius			
	input 32 degrees Celsius			
Criterion 3	Ozone Depletion Potential (ODP) of the refrigerant used for screw chiller(s) is			
	zero.			
Criterion 4	A plan for prevention of releasing refrigerant used for project screw chiller is			
	prepared. In the case of replacing the existing chiller with the project screw			
	chiller(s), a plan for prevention of releasing refrigerant used in the existing			
	chiller to the air (e.g. re-use of the equipment) is prepared. Execution of this			
	plan is checked at the time of verification, in order to confirm that refrigerant			
	used for the existing one replaced by the project is prevented from being			
	released to the air.			
Criterion 5	Periodical check at least once a year is planned.			
	1			

E. Emission Sources and GHG types

Reference emissions			
Emission sources GHG types			
Power consumption by reference screw chiller(s) CO ₂			
Project emissions			
Emission sources GHG types			
Power consumption by project screw chiller(s)	CO ₂		

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project screw chiller(s), ratio of COPs for reference/project screw chiller, and CO₂ emission factor for consumed electricity.

Two types of cooling systems are identified as possible systems for freezing and refrigeration in Thailand to supply cold water for production process: ice storage system with reciprocation type compressor, and brine/water chiller with screw type compressor.

Considering the efficiency and current implementation situation, this methodology sets the cooling system with screw type compressor as the reference chiller available to brine/water chilling.

This methodology ensures net emission reductions through the following manners:

• Reference COP is set to be the highest COP value (for each of two cooling capacity ranges) among the marketed reference chilling system in Thailand.

F.2. Calculation of reference emissions

$RE_p = \sum_i \{EC_{PJ,i,p} \times$	$(COP_{PJ,tc,i} \div COP_{RE,i}) \times EF_{elec}$
RE_p :	Reference emissions during the period p [tCO ₂ /p]
$EC_{PJ,i,p}$:	Power consumption of project screw chiller i during the period p
	[MWh/p]
$COP_{PJ,tc,i}$:	COP of project screw chiller <i>i</i> calculated under the standardizing
	temperature conditions [-]
$COP_{RE,i}$:	COP of reference screw chiller <i>i</i> under the standardizing
	temperature conditions [-]
EF _{elec} :	CO ₂ emission factor for consumed electricity [tCO ₂ /MWh]

G. Calculation of project emissions

$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

PE_p :	Project emissions during the period p [tCO ₂ /p]
$EC_{PJ,p}$:	Power consumption of project screw chiller <i>i</i> during the period
	<i>p</i> [MWh/p]
EF_{elec} :	CO2 emission factor for consumed electricity [tCO2/MWh]

H. Calculation of emissions reductions

$ER_p = RE_p - PE_p$	
ER_p :	Emission reductions during the period p [tCO ₂ /p]
RE_p :	Reference emissions during the period p [tCO ₂ /p]
PE_p :	Project emissions during the period p [tCO ₂ /p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed *ex ante* is listed as below.

Parameter	Description of data	Source		
EF _{elec}	CO ₂ emission factor for consumed electricity	Case 1)		
	[tCO ₂ /MWh].	[Grid electricity]		
	When the project screw chiller consumes only 1)	The most recent value		
	grid electricity, 2) captive electricity or 3) electricity	available at the time of		
	directly supplied from other sources (e.g.	validation is applied and		
	independent power producer (IPP), small power	fixed for the monitoring		
	producer (SPP) and very small power producer	period thereafter. The data		
	(VSPP)) to the project site, the project participant	is sourced from "Grid		
	applies the CO ₂ emission factor respectively. Emission Factor (GEF) of			
	When the project screw chiller may consume Thailand", endorsed by			
	electricity supplied from more than 1 electric Thailand Greenhouse Gas			
	source, the project participant applies the CO_2	Management Organization		
	emission factor with the lowest value.	(TGO) unless otherwise		
		instructed by the Joint		
	[CO ₂ emission factor]	Committee.		
	Case 1) Grid electricity			
	The most recent value available from the source Case2)			
	stated in this table at the time of validation	[Captive electricity]		
		For Option a)		
	Case 2) Captive electricity including	Specification of the captive		

cogeneration system

 EF_{elec} is determined based on the following options:

a) Calculated from its power generation efficiency (η_{elec} [%]) obtained from manufacturer's specification.

The power generation efficiency based on lower heating value (LHV) of the captive power generation system from the manufacturer's specification is applied;

$$EF_{gen} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data

The power generation efficiency calculated from monitored data of the amount of fuel input for power generation ($FC_{PJ,p}$) and the amount of electricity generated ($EG_{PJ,p}$) during the period *p* is applied. The measurement is conducted with the monitoring equipment to which calibration certificate is issued by an entity accredited under national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or volume]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

power generation system provided by the manufacturer (η_{elec} [%]). CO₂ emission factor of the fossil fuel type used in the captive power generation system (EF_{fuel} [tCO₂/GJ])

For Option b)

Generated and supplied electricity by the captive power generation system $(EG_{PJ,p} [MWh/p]).$ Fuel amount consumed by the power captive generation system $(FC_{PI,p})$ [mass or volume/p]). Net calorific value (*NCV_{fuel}* [GJ/mass or volume]) and CO₂ emission factor of the fuel (EF_{fuel}) [tCO₂/GJ]) in order of preference:

1) values provided by the fuel supplier;

2) measurement by the project participants;

regional or national default values;

4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel] CDM approved small scale

				methodology: AMS-I.A.		
	fuel type	Diesel fuel	Natural gas			
	EF _{elec}	0.8 *1	0.46 *2	[Captive electricity with		
	*1 The most re	cent value at the ti	natural gas]			
	is applied.			2006 IPCC Guidelines on		
	*2 The value i	s calculated with t	he equation in the	National GHG Inventories		
	option a) abo	ove. The lower	value of default	for the source of EF of		
	effective CO ₂	emission factor	for natural gas	natural gas.		
	(0.0543tCO ₂ /G	J), and the most	efficient value of	CDM Methodological tool		
	default efficier	ncy for off-grid ga	as turbine systems	"Determining the baseline		
	(42%) are appl	ied.		efficiency of thermal or		
				electric energy generation		
	Case 3) Electr	icity directly sup	plied from other	systems version 02.0" for		
	sources includ	ing cogeneration	system	the default efficiency for		
	EF_{elec} is deter	mined based on th	e following	off-grid power plants.		
	options:					
	a) The value pr	ovided by the elec	tricity supplier	Case 3) [Electricity directly]		
	with the evider	nce;		supplied from other sources		
	b) The value ca	alculated in the sar	ne manner for the	including cogeneration		
	option a) of 2)	captive electricity	as instructed	system]		
	above;			For Option a)		
	c) The value ca	lculated in the san	The evidence stating			
	option b) of 2)	captive electricity	information relevant to the			
	above;		value of emission factor			
	When the pro-	oject screw chill	(e.g. data of power			
	electricity sup	plied from more	e than 1 electric	generation, type of power		
	source, the pr	roject participant	applies the CO_2	plant, type of fossil fuel,		
	emission factor	with the lowest v	alue.	period of time).		
COP _{RE,i}	COP of the r	eference screw cl	hiller <i>i</i> under the	The default COP value is		
	standardizing t	emperature condit	ions	derived from the result of		
	The COP of the	e reference screw of	survey on COP of chillers.			
	from the defau	lt COP values in th	e following tables	The survey should prove		
	in line with co	ooling capacity of	the project screw	the use of clear		
	chiller <i>i</i> . ("x"	in the table r	epresents cooling	methodology. The $COP_{RE,i}$		
	capacity per un	iit.)		should be revised if		
				necessary from survey		
				result which is conducted		

	Cooling capacity per unit (kW)	x≤520	520 <x≤1,000< th=""><th></th><th>by J participa</th><th></th><th>or</th><th>project</th></x≤1,000<>		by J participa		or	project
	COP _{RE,i}	4.97	5.02					
COP _{PJ,i}		project screw of the project so	chiller <i>i</i> under t	the catalog	Specific screw cl the qua acceptan manufac	hiller <i>i</i> otation nce te	prepa or	factory

History of the document

Version	Date	Contents revised
01.0	20 September 2021	Electronic decision by the Joint Committee
		Initial approval.