Joint Crediting Mechanism Approved Methodology TH_AM003 "Energy Saving by Introduction of High Efficiency Inverter Type Centrifugal Chiller"

A. Title of the methodology

Energy Saving by Introduction of High Efficiency Inverter Type Centrifugal Chiller, Version 02.0

B. Terms and definitions

Terms	Definitions
Inverter type centrifugal chiller	An inverter type centrifugal chiller is a chiller which
	contains inverter, an apparatus to control the speed of the
	compressor motor in order to maintain the ambient
	temperature, and includes a centrifugal compressor.
Cooling capacity	Cooling capacity is the capability of individual chiller to
	remove heat. In this methodology, "cooling capacity" is used
	to represent a cooling capacity per one chiller unit and not
	for a system with multiple chiller units.
Periodical check	Periodical check is a periodical investigation of chiller done
	by manufacturer or agent who is authorized by the
	manufacturer, in order to maintain chiller performance.
COP (Coefficient Of	A ratio of the net refrigerating capacity to the total input
Performance)	power at any given set of rating conditions.
	Net refrigerating capacity is the capacity of the evaporator
	available for cooling of the thermal load external to the
	chiller and it is calculated using only the sensible heat
	transfer. (AHRI Standard 550/590)

C. Summary of the methodology

Items			Summary
GHG	emission	reduction	This methodology applies to the project that aims for saving
measures			energy by introducing high efficiency centrifugal chiller for the

	target factory, commerce facilities etc. in Thailand.	
Calculation of reference	Reference emissions are GHG emissions from using reference	
emissions	chiller, calculated with power consumption of project chiller,	
	ratio of COPs (Coefficient Of Performance) of	
	reference/project chillers and CO2 emission factor for	
	electricity consumed.	
Calculation of project	Project emissions are GHG emissions from using project	
emissions	chiller, calculated with power consumption of project chiller	
	and CO ₂ emission factor for electricity consumed.	
Monitoring parameter	Power consumption of project chiller	
	• The amount of fuel consumed and/or the amount of	
	electricity generated by captive power, where applicable.	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

	0, 1,	A 0				
Criterion 1	Project chiller is an inverter type centrifugal chiller with a capacity which is less					
	than or	than or equals to 1,500 USRt.				
	* 1 USF	Rt = 3.52 kW				
Criterion 2	COP fo	or project chiller i calcu	ılated under	the standa	rdizing tem	perature
	conditio	ns* (COP _{PJ,tc,i}) is more th	an the thres	hold COP va	alues set in t	he table
	below. ("x" in the table represents	cooling cap	acity per uni	it.)	
		Cooling capacity per unit	x≤350	350 <x≤800< th=""><th>800<x≤1,500< th=""><th></th></x≤1,500<></th></x≤800<>	800 <x≤1,500< th=""><th></th></x≤1,500<>	
		(USRt)	A <u>3</u> 330	330 \A_600	800 \A_1,500	
		Threshold COP value	6.24	6.37	6.47	
	COP _{PJ,tc,i} is calculated by altering the temperature conditions of COP of project					
	chiller i (COP _{PJ,i}) from the project specific conditions to the standardizing					
	conditions. COP _{PJ,i} is derived from specifications prepared for the quotation or					
	factory acceptance test data by manufacturer.					
	[equation to calculate COP _{PJ,tc,i}]					
	$COP_{PJ,tc,i} = COP_{PJ,i} \times [(T_{cooling-out,i} - T_{chilled-out,i} + TD_{chilled}]$					
		$+ TD_{cooling}$) ÷ (37 – 7	+ TD _{chilled}	$1 + TD_{coolin}$	g)]
	COP _P	;tc,i : COP of project	ct chiller i ca	lculated und	er the standa	rdizing

		temperature conditions* [-]
	$COP_{PJ,\mathrm{i}}$: COP of project chiller <i>i</i> under the project specific conditions
		[-]
	T _{cooling-out,i}	: Output cooling water temperature of project chiller <i>i</i> set
		under the project specific conditions [degree Celsius]
	$T_{chilled-out,i}$: Output chilled water temperature of project chiller <i>i</i> set
		under the project specific conditions [degree Celsius]
	$TD_{cooling}$: Temperature difference between condensing temperature
		of refrigerant and output cooling water temperature
		1.5 degree Celsius set as a default value [degree Celsius]
	$TD_{chilled}$: Temperature difference between evaporating temperature
		of refrigerant and output chilled water temperature,
		1.5 degree Celsius set as a default value [degree Celsius]
	*The standardizing Chilled w	ng temperature conditions to calculate COP _{PJ,tc,i} ater: output 7 degrees Celsius
	Cililed W	input 12 degrees Celsius
	Cooling v	
Criterion 3	Periodical check	input 32 degrees Celsius is planned more than one (1) time annually.
		· · · · · · · · · · · · · · · · · · ·
Criterion 4	_	Potential (ODP) of the refrigerant used for project chiller is
G ::	zero.	
Criterion 5	A plan for prevention of releasing refrigerant used for project chiller is prepared.	
	In the case of replacing the existing chiller with the project chiller, a plan for	
	prevention of rele	easing refrigerant used in the existing chiller to the air (e.g. re-
	use of the equipm	nent) is prepared. Execution of this plan is checked at the time
	of verification, in	n order to confirm that refrigerant used for the existing one
	replaced by the p	roject is prevented from being released to the air.

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Power consumption by reference chiller CO ₂		
Project emissions		
Emission sources	GHG types	
Power consumption by project chiller	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying power consumption of project chiller, ratio of COPs for reference/project chillers, and CO₂ emission factor for electricity consumed.

The COP of reference chiller is conservatively set as a default value in the following manner to ensure the net emission reductions.

- 1. The reference COP value varies by its cooling capacity.
- 2. The maximum values of COP in each cooling capacity range set for this methodology are defined as $COP_{RE,i}$ as described in Section I.

F.2. Calculation of reference emissions

$$RE_p = \sum_{i} \{ EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \}$$

RE_p : Reference emissions during the period p [tCO₂/p]

 $EC_{PI,i,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

 $COP_{PJ,tc,i}$: COP of project chiller *i* calculated under the standardizing temperature conditions [-]

 $COP_{RE,i}$: COP of reference chiller *i* under the standardizing temperature conditions [-]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

G. Calculation of project emissions

$$PE_p = \sum_i (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p [tCO₂/p]

 $EC_{PLi,p}$: Power consumption of project chiller *i* during the period *p* [MWh/p]

EF_{elec}: CO₂ emission factor for consumed electricity [tCO₂/MWh]

H. Calculation of emissions reductions

 $ER_p = RE_p - PE_p$

 ER_p : Emission reductions during the period p [tCO₂/p] RE_p : Reference emissions during the period p [tCO₂/p] PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity.	[Grid electricity]
	When project chiller consumes only grid	The most recent value available
	electricity or captive electricity, the project	at the time of validation is
	participant applies the CO ₂ emission factor	applied and fixed for the
	respectively.	monitoring period thereafter.
		The data is sourced from "Grid
	When project chiller may consume both grid	Emission Factor (GEF) of
	electricity and captive electricity, the project	Thailand", endorsed by
	participant applies the CO ₂ emission factor	Thailand Greenhouse Gas
	with lower value.	Management Organization
		unless otherwise instructed by
	[CO ₂ emission factor]	the Joint Committee.
	For grid electricity: The most recent value	
	available from the source stated in this table at	[Captive electricity]
	the time of validation	For the option a)
		Specification of the captive
	For captive electricity, it is determined based	power generation system
	on the following options:	provided by the manufacturer
		(η _{elec} [%]).
	a) Calculated from its power generation	CO ₂ emission factor of the fossil
	efficiency (η _{elec} [%]) obtained from	fuel type used in the captive
	manufacturer's specification	power generation system (EF _{fuel}
	The power generation efficiency based on	[tCO ₂ /GJ])
	lower heating value (LHV) of the captive	
	power generation system from the	For the option b)

manufacturer's specification is applied;

$$EF_{elec} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$$

b) Calculated from measured data
The power generation efficiency calculated
from monitored data of the amount of fuel
input for power generation ($FC_{PJ,p}$) and the
amount of electricity generated ($EG_{PJ,p}$)
during the monitoring period p is applied. The
measurement is conducted with the monitoring
equipment to which calibration certificate is
issued by an entity accredited under
national/international standards;

$$EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PJ,p}}$$

Where:

 NCV_{fuel} : Net calorific value of consumed fuel [GJ/mass or weight]

Note:

In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to EF_{elec} depending on the consumed fuel type.

- The system is non-renewable generation system
- Electricity generation capacity of the system is less than or equal to 15 MW

fuel type	Diesel fuel	Natural gas
EF _{elec}	0.8 *1	0.46 *2

*1 The most recent value at the time of validation is applied.

*2 The value is calculated with the equation in

Generated and supplied electricity by the captive power generation system (EG_{PJ,p} [MWh/p]).

Fuel amount consumed by the captive power generation system (FC_{PJ,p} [mass or weight/p]).

Net calorific value (NCV_{fuel} [GJ/mass or weight]) and CO_2 emission factor of the fuel (EF_{fuel} [tCO₂/GJ]) in order of preference:

- 1) values provided by the fuel supplier;
- 2) measurement by the project participants;
- 3) regional or national default values;
- 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. Lower value is applied.

[Captive electricity with diesel fuel]

CDM approved small scale methodology: AMS-I.A.

[Captive electricity with natural gas]
2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas.
CDM Methodological tool
"Determining the baseline

	the option a) above. The lower value of default	efficiency of thermal or electric
	effective CO ₂ emission factor for natural gas	energy generation systems
	(0.0543 tCO ₂ /GJ), and the most efficient value	version02.0" for the default
	of default efficiency for off-grid gas turbine	efficiency for off-grid power
	systems (42%) are applied.	plants.
COP _{RE,i}	The COP of the reference chiller <i>i</i> is selected	The default COP values are
	from the default COP value in the following	derived from the result of
	tables in line with cooling capacity of the	survey on COP of chillers from
	project chiller i. ("x" in the table represents	manufacturers that have high
	cooling capacity per unit.)	market share. The survey should
		prove the use of clear
		methodology. The COP _{RE,i}
	Cooling capacity per x≤350 350 <x≤800 800<x≤1,500="" th="" ="" <=""><th>should be revised if necessary</th></x≤800>	should be revised if necessary
		from survey result which is
	COP _{RE,i} 6.24 6.37 6.47	conducted by JC or project
		participants.
$COP_{PJ,i}$	The COP of project chiller <i>i</i> under the project	Specifications of project chiller
	specific conditions.	i prepared for the quotation or
		factory acceptance test data by
		manufacturer
$T_{cooling-out,i}$	Output cooling water temperature of project	Specifications of project chiller
	chiller i set under the project specific	<i>i</i> prepared for the quotation or
	conditions.	factory acceptance test data by
		manufacturer
$T_{chilled-out,i}$	Output chilled water temperature of project	Specifications of project chiller
	chiller i set under the project specific	<i>i</i> prepared for the quotation or
	conditions.	factory acceptance test data by
		manufacturer

History of the document

•		
Version	Date	Contents revised
02.0	11 October 2023	JC5 Revision to: Update the threshold COP values in Criterion 2 and the default COP value due to the improved efficiency of chillers currently available in the local market since its initial approval of the methodology Add the definition of "COP (Coefficient Of

		Performance)"
01.0	21 August 2017	JC3, Annex 6
		Initial approval.