T-VER-P-TOOL-01-08

Calculation of Appropriate Number of Sample Plots for Carbon Measurements in Forest Project Activities

Version 01

1. Introduction

This document is a tool for calculating the appropriate number of sample plots in estimating the aboveground tree biomass as well as the carbon stocks and change in carbon stocks of trees in forest project activities. This tool can be used to estimate greenhouse gas emissions in both baseline and project scenarios.

2. Relevant definitions and reference values

Details appear in Annex 1

3. Characteristics of relevant activities and conditions

This tool is suitable for calculating the number of plots suitable for estimating tree biomass to measure carbon stock and changes in carbon stock of trees in forest activity. The nature of the activities fall into the scope and conditions of use as follows:

1) This tool is used to calculate the optimal number of plots for tree biomass estimation using field measurement methods for base case and project implementation.

2) This tool is used to calculate optimal number of plots based on the accuracy level of biomass to be assessed.

3) Parameters involved in biomass calculation at the sample plot such as biomass expansion factor (BEF) and root-shoot ratio are defined as fixed constants. Similarly, all equations used in biomass calculation at sample plot level such as allometric equation, volume equation and volume table are considered correct.

4. Hypothesis

The assumptions for calculating the optimal number of sample plots are as follows:

1) Value of the area of each stratum within the project boundary is known

2) Value of the variance of biomass stocks in each stratum is known

3) The project area is stratified into one or more strata.

Where:

		stocks within the project boundary .
n	means	Number of sample plots suitable for estimation of biomass

 n_i means Number of sample plots in stratum i for estimation of biomass stocks within the project boundary.

n_{BSL}	means	Number of sample plots suitable for estimation of biomass
		stocks within the project boundary for the baseline.
n _{PROJ,i}	means	Number of sample plots in stratum i for estimation of
		biomass stocks within the project boundary for project
		implementation.

5. Stratification

When the project area is heterogeneous, it is required a stratification to assess carbon stock in biomass in more accurate manner. Stratification must be done according to appeared conditions. For example, similar stratum must possess the most similar characteristics with the greatest differences between strata. Characteristics that can be used as criteria for stratification are such as type of land use, forest type, plant type, altitude above sea slope level, soil fertility, the age class of vegetation and their management. These characteristics can be stratified using remote sensing data such as satellite images, aerial photographs, and images from Google Earth.

In addition, the stratification is based on differences in the amount of carbon stock in the biomass to be assessed. Therefore, the difference in the amount of carbon stock in the biomass is used as a criterion to determine the size of the area in each stratum, if the total biomass carbon stock to be assessed comes from two or more sites, the stratification priority will be given to sites with greater carbon stock. We can define stratum according to their characteristics as follow:

- For baseline net GHG removals by sinks, it is usually sufficient to stratify the area according to major vegetation types and their crown cover and/or land use types
- For net GHG removal forecast, it is sufficient to stratify the area according to major vegetation and forest management
- For net GHG removal (monitoring during post implementation), the stratification depends on major vegetation and actual forest management. In the case of project impacts from natural or human disasters, such as storms or other factors such as sediment loads, which cause the trend of the project's biomass carbon sequestration to change. It is necessary to re- stratification accordingly.

6. Size of sample plot

Sample plots in estimating the aboveground tree biomass as well as the carbon stocks and change in carbon stocks of trees in forest project activities may be in square, rectangle or circle shape. This is consistent with the principle of plotting specimens in forest resource surveys. For sample plot sizes, the most popular and generally accepted sample plot sizes can be used. Recommended size means a square plot with dimensions of 40 \times 40 meters (size 1 rai). In case the project area is not suitable for placing a sample plot of 40 \times 40 meters, consider placing the sample plot in other shapes and sizes as required. The size of the plot is the parameter required for calculating the number of plots suitable for estimating the aboveground tree biomass to measure carbon stock and changes in carbon of trees in forest project activities.

7. Calculating the total number of sample plots

The sample plots required for estimating the aboveground tree biomass depends on the required accuracy and precision and the quantitative variation in biomass to be assessed. In this calculation tool, the accuracy and accuracy is set to a confidence level of 90 percent or as specified by the TGO.

The project area is stratified according to the estimated biomass variability. and determine the approximate area of each stratum. If biomass is the sum of biomass in two or more sites, the stratum is then stratified based on biomass variability in primary carbon stock, e.g. carbon deposits with the highest biomass, for example.

For this calculation tool, the variation of biomass quantity is determined in the form of standard deviation. The estimated standard deviation of the biomass content in each stratum can be used from the existing data of the project site. Data from research or reports of similar areas or estimated from the preliminary survey or from the opinions of experts This tool calculates the number of sample plots required for biomass estimation in the project area using a repeatable method. which has the following steps:

<u>Step 1</u> The first cycle is the calculation of the number of sample plots required for biomass stock in the project s boundary as shown in Equation (1).

$$n = \frac{N \times t_{VAL}^2 \times (\sum_i w_i \times s_i)^2}{N \times E^2 + t_{VAL}^2 \times \sum_i w_i \times s_i^2}$$
(1)

Where

- *n* means Number of sample plots required for estimation of biomass stocks within the project boundary (no unit)
- *N* means Total number of possible sample plots within the project boundary, i.e. Population or Sampling Distance (no unit).

t_{VAL}	means	Two-sided Student's t-value, at infinite degrees of freedom
		(∞) for a given level of confidence (no unit) is hereby defined
		as a 90% confidence level.
Wi	means	Relative weight of the area of stratum i (no unit)
s _i	means	Estimated standard deviation of biomass stock in stratum i. (tons of dry weight or tons of dry weight per rai)
Ε		
E	means	Acceptable margin of error is half the confidence interval in
		the project boundary estimation of biomass stock (tons of
		dry weight or tons of dry weight per rai)
i	means	1, 2, 3, biomass stock estimation strata within the project
		boundary

<u>Step 2</u> If the number of sample plots n calculated from equation (1) is 30 or more, no further calculations are required. Number of sample plots n calculated in the first step. is the number of sample plots that can be used.

<u>Step 3</u> If the number of n-sample plots calculated from equation (1) is less than 30, iterate into equation (1) using a t-value with the number of free values n-1 and the calculated number of sample plots n in the second round is the number of sample plots that can be used.

<u>Step 4</u> In case the proportion of the sample area is less than 5% of the project area A simple equation can be used to calculate the number of sample plots as in equation (2).

$$n = \left(\frac{t_{VAL}}{E}\right)^2 \times (\sum_i w_i \times s_i)^2 \tag{2}$$

n	means	Number of sample plots required for estimation of biomass
		stocks within the project boundary (no unit)
t_{VAL}	means	Two-sided Student's t-value, at infinite degrees of freedom
		(∞) for a given level of confidence (no unit) is hereby
		defined as a 90% confidence level.
Wi	means	Relative weight of the area of stratum I (no unit)
s _i	means	Estimated standard deviation of biomass stock in stratum i
		(tons of dry weight or tons of dry weight per rai)

E means Acceptable margin of error is half the confidence interval in the project boundary estimation of biomass stock (tons of dry weight or tons of dry weight per rai)

<u>Step 5</u> In the case that the proportion of the sample area is more than 5% of the project area. The equation can be used to calculate the number of adjusted sample plots as in equation (3).

$$n_a = n \times \frac{1}{1 + n/N} \tag{3}$$

n _a	means	Adjusted sample plot count for the project boundary estimation
		of biomass stock (no unit)
n	means	Number of sample plots required for the project boundary
		estimation of biomass stock (no unit)
Ν	means	The total number of possible sample plots in the project
		boundary, i.e. Population or Sampling Distance (no unit)

8. Distribution of the number of sample plots in each stratum

Appropriate distribution of the number of sample plots in each stratum (the optimum allocation) is calculated by using the number of sample plots in each stratum as shown in equation (4) below:

$$n_i = n \times \frac{w_i \times s_i}{\sum_i w_i \times s_i} \tag{4}$$

n_i	means	Number of sample plots allocated to stratum i (no unit)
п	means	Number of sample plots required for estimation of biomass
		stocks within the project boundary (no unit)
w _i	means	Relative weight of the area of stratum i (no unit)
s _i	means	Estimated standard deviation of biomass stock in stratum i (tons
		of dry weight or tons of dry weight per rai)
i	means	1, 2, 3, biomass stock estimation strata within the project
		boundary

9. Spreadsheet program for calculation

To calculate the total number of sample plots and the distribution of sample plots in each stratum of biomass estimation can be calculated using a spreadsheet program of

Page 7

Winrock International called "WINROCK SAMPLE PLOT CALCULATOR SPREADSHEET TOOL". or website: <u>Winrock International</u>

10. Relevant parameters

T-VER

10.1 Parameters not required monitoring

Parameter	t _{VAL}
Unit	No unit
Definition	Two-sided Student's t-value at infinite degrees of freedom for the
	required confidence level (no unit)
Relevant equation	equation (1) and (2)
Source of	Student's t-value table in Annex 2
information	
Remark	A 90% confidence level is required in calculating tree biomass in
	forest project activities, in addition to the determination of other
	confidence levels as specified in the methodology or as specified
	by TGO

Parameter	E
Unit	Tons of dry weight or tons of dry weight per rai
Definition	Acceptable margin of error in estimation of biomass stock within
	the project boundary
Relevant equation	equation (1) and (2)
Source of	Student's t-value table in Annex 2
information	
Remark	The tolerance was equal to 10% of the mean biomass of trees in
	the project area other than the determination of other
	acceptable variances as specified in the methodology or as
	prescribed by TGO

10.2 Parameters required monitoring

Parameter	Ν
Unit	No unit
Definition	Total number of possible sample plots within the project
	boundary, i.e. population or sampling distance.
Relevant equation	equation (1) and (3)

Source of	Field measurement
information	
Measurement	Total number of possible sample plots within the project
method	boundary is equal to the total project boundary divided by the
	sample plot size
Remark	Example: project area is 1,000 rai and the sample plot is 1 rai.
	$m{N}$ is equal to 1000.

Parameter	Wi
Unit	No unit
Definition	Relative weight of the area of stratum i
Relevant equation	equation (1) (2) and (4)
Source of	Field measurement
information	
Measurement	Relative weight of the area of stratum is equal to the area of
method	each floor divided by the total project boundary
Remark	-

Parameter	S _i
Unit	Tons of dry weight or tons of dry weight per rai
Definition	Estimated standard deviation of biomass stock in stratum i
Relevant equation	equation (1) (2) and (4)
Source of	Field measurement
information	
Measurement	Estimated standard deviation of biomass stock in stratum I may
method	be known from the existing information of the project boundary
	or the boundary that is similar to the project or the basic
	information of the project.
Remark	-

on 01

Page 9

9. Reference documents

- 1) A/R Methodology Tool "Calculation of the number of sample plots for measurements within A/R CDM project activities"
- 2) 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry
- 3) 2006 IPCC Guidelines for National Greenhouse Gas Inventories
- 4) 2019 Refinement to 2006 IPCC Guidelines for National Greenhouse Gas Inventories
- 5) T-VER tool: T-VER-TOOL-FOR/AGR-01 Calculation for Carbon Sequestration (version 4)
- 6) Thailand Voluntary Emission Reduction Program Reference Manual: Forestry and agriculture sector.

Annex

Annex 1 Relevant Definitions

Aboveground biomass	The dry weight of all parts of the tree above the ground,		
	including trunks, branches, leaves, flowers and fruits, including		
	saplings and bamboo.		
Belowground biomass	dry weight of the underground part of the tree		
Standard deviation (s)	Statistical tools are used to measure the distribution of data to		
	determine the mean data characteristics. A small standard		
	deviation indicates that each measurement is close to the		
	mean		
Variance (s ²)	Statistical tools are used to measure the distribution of data to		
	determine the mean data characteristics which is the square of		
	standard deviation		
Confidence level	The probability that the population parameter falls within the		
	estimated range. For example, given that tree biomass		
	estimates have a 90% confidence level, this means that the		
	probability that the estimated biomass values are less than the		
	minimum. (lower limit) or more, the maximum (upper limit) of		
	only 10 percent.		
Confidence interval	A range of parameters that cover the true value of a		
	population. For example, the assessment of biomass carbon		
	sequestration of reforestation activities sets at a 90 percent		
	confidence level.		

Annex 2 Parameters with statistical references

T-VER

	Confidence level					
Df	80%	90%	95%	98%	99%	
1	3.078	6.314	12.706	31.820	63.657	
2	1.886	2.920	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.365	4.032	
6	1.440	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.897	3.355	
9	1.383	1.833	2.262	2.821	3.250	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.350	1.771	2.160	2.650	3.012	
14	1.345	1.761	2.145	2.625	2.977	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.584	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.080	2.518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
24	1.318	1.711	2.064	2.492	2.797	
25	1.316	1.708	2.060	2.485	2.787	
26	1.315	1.706	2.056	2.479	2.779	
27	1.314	1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
30	1.310	1.697	2.042	2.457	2.750	
∞	1.282	1.645	1.960	2.326	2.576	

Table 2.1 Student's t-value at infinite degrees of freedom in the first iteration and at degrees of freedom equal to (n-1) in subsequent iterations, for the required confidence level.

Df – Degree of freedom

D		40	
P	age	12	

Document information					
Version	rsion Amendment Entry into force Description		Description		
01		1 March 2023	-		