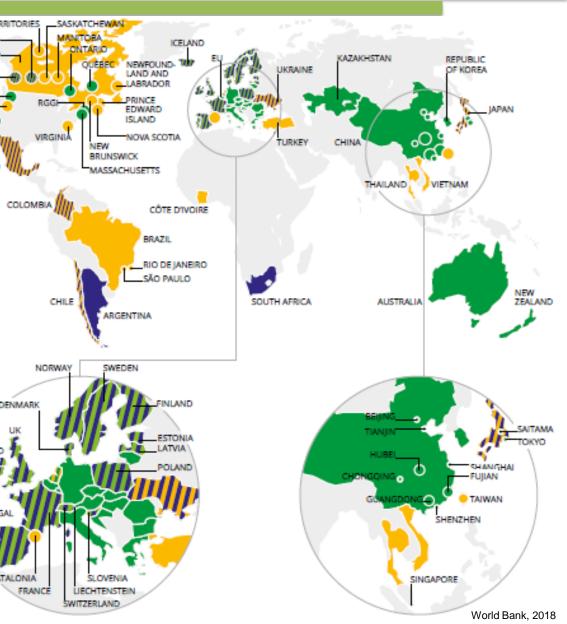
Carbon Pricing Instruments: Carbon tax

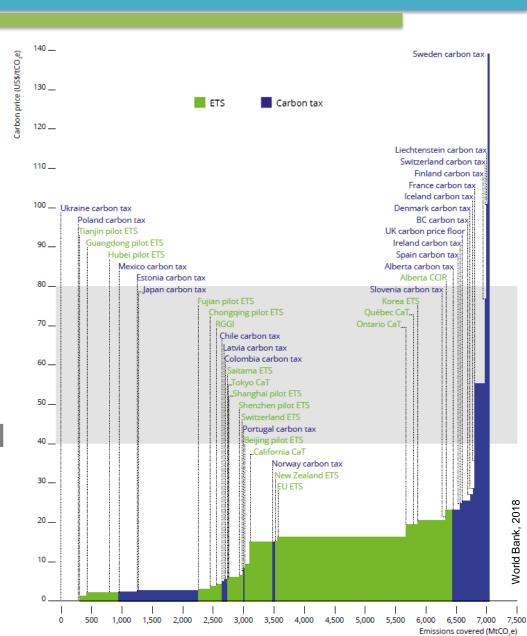
Technical Training on Carbon Pricing September 26th, 2018

Gabriel FEUILLET-PALMA



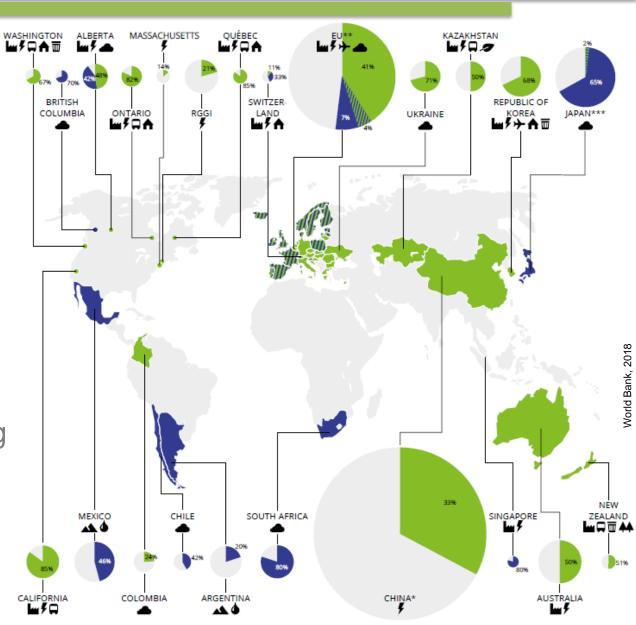
INTRODUCTION: GLOBAL OVERVIEW OF CARBON PRICING INITIATIVES

51 national and subnational jurisdictions are putting a price on carbon in 2018


CPI implemented or scheduled would cover 20% of global GHG emissions (11 GtCO2e)

- ETS implemented or scheduled for implementation
- Carbon tax implemented or scheduled for implementation
- 🚺 Carbon tax implemented or scheduled, ETS under consideration
- ETS implemented or scheduled, carbon tax under consideration
 ETS or carbon tax under consideration
- ETS and carbon tax implemented or scheduled

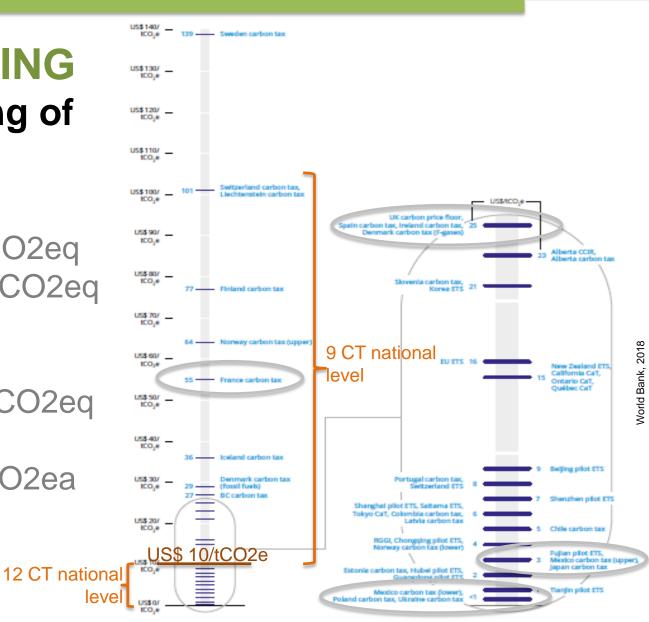
INTRODUCTION: GLOBAL OVERVIEW OF CARBON TAXES


- 23 carbon taxes implemented
 - 21 carbon taxes implemented at national level
 - 2 carbon taxes implemented at subnational level
- 2.2 GtCO2e covered
- 3 carbon taxes scheduled for implementation (national level)
 - Argentina
 - Singapore
 - South Africa

INTRODUCTION: GLOBAL OVERVIEW OF CARBON TAXES

SECTORAL COVERAGE AND GHG EMISSIONS COVERED differ from one country to another

- Mexico: covers coal and petroleum
- France: covers all fossil fuels for heating and transport
- Spain: covers fluorinated GHGs (Fgases) – all sectors


INTRODUCTION: GLOBAL OVERVIEW OF CARBON TAXES

CARBON PRICING uneven depending of local contexts

Mexico: US\$ 3 tCO2eq(upper) to US\$ 1 tCO2eq(lower)

o France: US\$ 55 tCO2eq

Spain: US\$ 25 tCO2ea

AGENDA

1. DEFINING A CARBON TAX

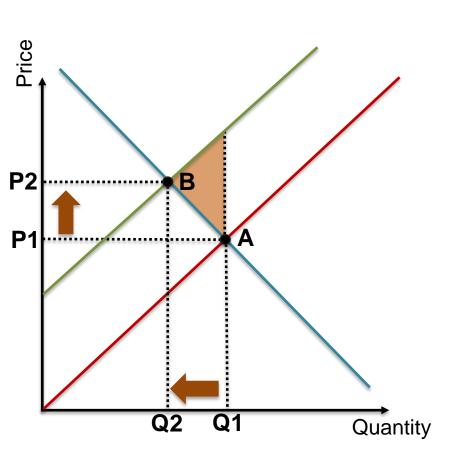
2. CARBON TAX DESIGN

3. UNWANTED EFFECTS: THE MITIGATION MEASURES

AGENDA

1. DEFINING A CARBON TAX

2. CARBON TAX DESIGN


3. UNWANTED EFFECTS: THE MITIGATION MEASURES

WHAT IS A CARBON TAX?

- Environmental policy instrument (standards/CAC, subsidies, and market) to regulate pollution
 - Set a price to negative environmental (and social) externality
 - Send a signal price to the economic agents (private sector, consumers etc.)
- Equal the marginal damage costs (Pigouvian tax)

CARBON TAX EFFECTS

Point A: Market is efficient – Supply meets demand.

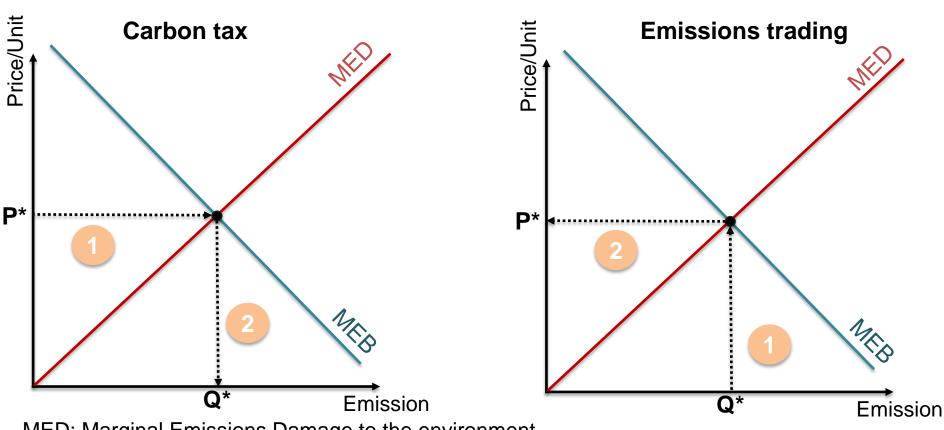
Market is not socially efficient because negatives externalities cost is not accounted for.

⇒ Tax introduced to compensate for the negative effects

Price raises from **P1 to P2** affecting the consumer behavior

Quantity demanded decreases from **Q1 to Q2** reducing the overall externalities generated

Revenue generated can be used to remediate environmental damage or invest in low-impact technologies


Point B: Market is socially efficient – External costs have been internalized using the tax.

=> **Deadweight loss** in the market is eliminated.

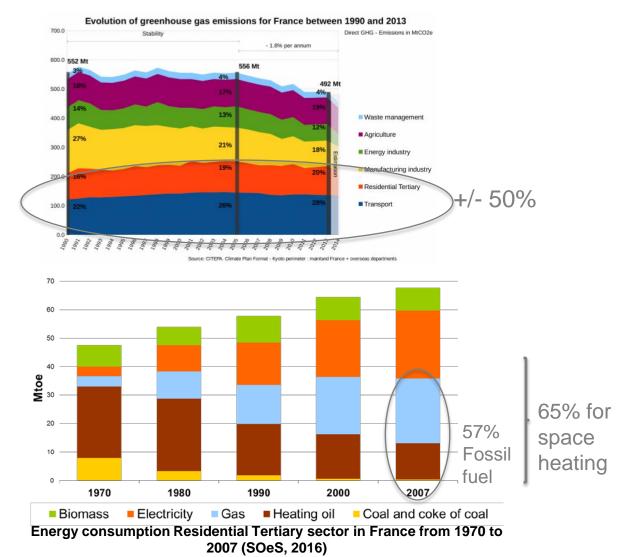
WHY A CARBON TAX?

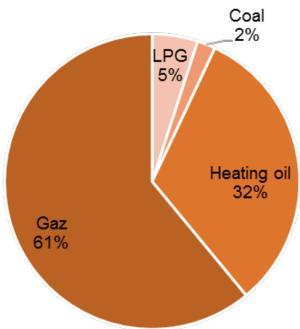
- Incent economic agents to internalize negative environmental (and social) externality cost associated with the good's production.
- Create a financial incentive to lower the volume of environmental externalities released
 - Flexible / High discretion: CT based on the actual level of emission and not on the means
 - Certainty regarding the carbon price over a given period
 - Government revenue generation: revenues from CT can be recycled.

CARBON TAX AND EMISSIONS TRADING

MED: Marginal Emissions Damage to the environment

MEB: Marginal Emissions Benefit – mirror image of the Marginal Abatement Cost Curve (MACC)

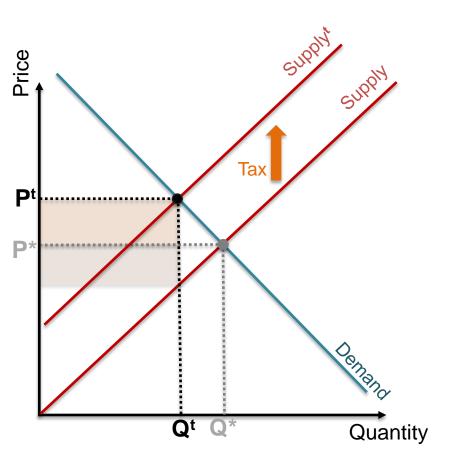

WHEN SELECT A CARBON TAX?

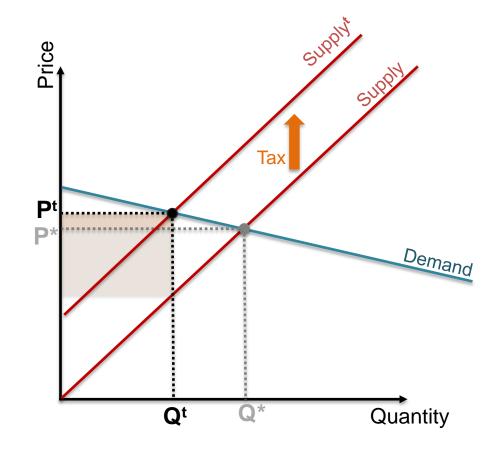

- LOCAL CONTEXT HIGHLY RELEVANT FOR SELECTING AND ADOPTING GHG POLICY INSTRUMENT
- Economic context
- Emissions profile
- Political feasibility and state of public opinion
- Government capacity and rule of law

CONSIDERATIONS PARTICULARY RELEVANT FOR CARBON TAX ADOPTION:

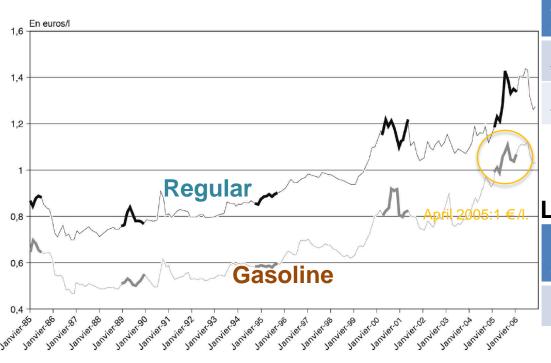
- Market-driven economies
- Elastic markets
- Benefits generated by revenue's recycling

EMISSIONS PROFILE - RESIDENTIAL SECTOR IN FRANCE




Breakdown of the GHG emissions generated by residential sector in France in 2015 (SOeS, 2016)

ELASTICITY DEMAND


Low elasticity of demand

High elasticity of demand

ELASTICITY DEMAND - ROAD TRANSPORT FUEL IN FRANCE SHORT TERM

Estimation ST elasticity price in 2006 (Source: INSEE)	Regular	Gasoline	Overall
Excluding seasonal variation adjustment	- 0.46	- 0.17	- 0.36
	(0.44)	(0.34)	(0.34)
Including seasonal variation adjustment	- 0.35	- 0.11	- 0.26
	(0.45)	(0.34)	(0.27)

LONG TERM

Estimation LT elasticity price in 2006 (Source: INSEE)	Rural HH	Urban HH	
Fuel (€/L)	- 0.74 (0.16) / -0.78 (0.14)	- 0.91 (0.11) / - 0.93 (0.12)	

In Short Term: +10% of fuel price leads to -3% [-2.6 to -3.6] of household fuel consumption **In Long Term**: +10% of fuel price leads to (i) between -7% to -8% of rural household fuel consumption and (ii) between -8% to -9% of urban household fuel consumption.

AGENDA

1. DEFINING A CARBON TAX

2. CARBON TAX DESIGN

3. UNWANTED EFFECTS: THE MITIGATION MEASURES

STAGES OF CARBON TAX DESIGN

- 1. POLICY OBJECTIVES & NATIONAL CIRCUNSTANCE / CONTEXT
- 2. DESIGN OF THE TAX CARBON
 - TAX BASE
 - TAX RATE
 - INSTITUTIONS
 - REVENUES USE
 - AVOIDING UNWANTED EFFECTS
- 3. EVALUATION & IMPROVEMENT

POLICY OBJECTIVES & NATIONAL CIRCUNSTANCE / CONTEXT

Determine policy objectives

GHG emissions trajectory Revenue raising etc.

Understand national/local context:

- Emissions profile (overall, sectoral etc.)
- Analyze economic structures
- Analyze governance constraints
- Identify areas of resistance etc.

POLICY OBJECTIVES – FRANCE (1/3)

2007: EU ENERGY AND CLIMATE PACKAGE: 3x20%

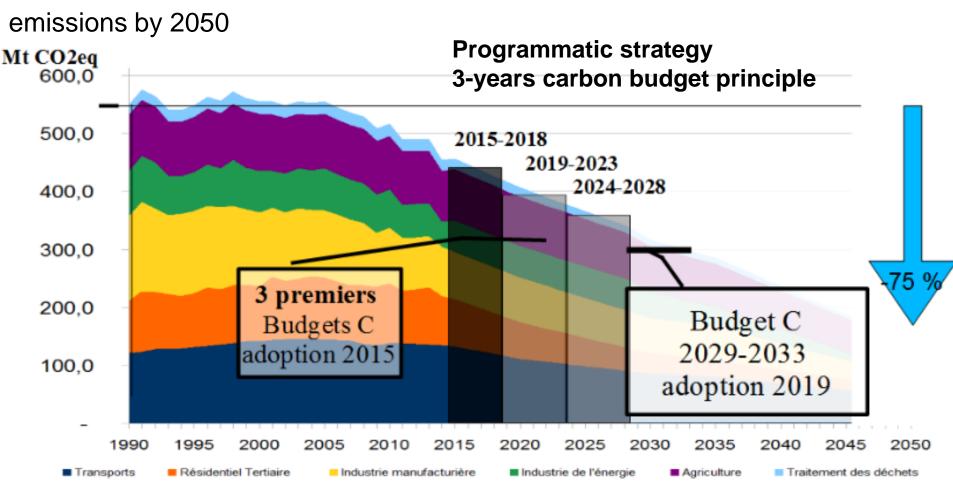
2007-2010: GRENELLE DE L'ENVIRONNEMENT

- -38% of energy consumption in existing housing by 2020
- -20% of GHG emissions released by transport sector by 2020
- +23% of renewable energy in final energy consumption by 2020
- Ambition factor 4 by 2050
 - Local climate and energy action plan [TOP DOWN approach]
 - Climate Energy Contribution (Carbon tax)

2014: 2ND EU ENERGY AND CLIMATE PACKAGE: -43% by 2030

(2005 baseline) for sectors covered by EU ETS & -30% for other sectors

2014: CARBON TAX ADOPTED AND IMPLEMENTED


2015: ENERGY TRANSITION FOR GG ACT

- -40% of GHG emissions by 2030 (baseline 1990) and factor 4 by 2050
- -50% of final energy consumption by 2050 (baseline 2012)
- 32% of renewable energy in final energy consumption by 2030

2017: NATIONAL STRATEGY LOW CARBON: -73% by 2050.

POLICY OBJECTIVES – FRANCE (2/3)

FRENCH NATIONAL STRATEGY LOW CARBON: -73% of GHG

Source: National Strategy low-carbon

POLICY OBJECTIVES – FRANCE (3/3)

Aims and instruments of public policies for a low-carbon strategy

Integrating carbon pricing in decision-making

Removing obstacles to the decarbonisation of the economy

Establishing true carbon prices: eco-tax or emissions trading below an overall limit Ensuring the acceptability of policies: compensation and support measures

Removing harmful subsidies

Developing information: nudges, labels and CSR

Encouraging green decision-making:

- standards
- subsidies and tax credits
- energy savings certificates
- calls for tender

Enabling the transformation of the economy

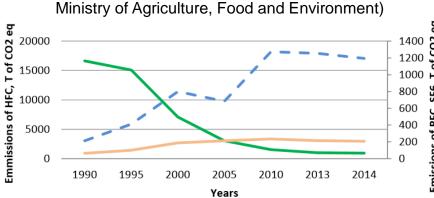
- R&D, infrastructure, networks
- professional training
- quality of regulations
- finance instruments

Source: National Strategy low-carbon

TAX BASE

- Scope of taxation
- Points of regulation
- Legal entity responsible for tax payment
- Thresholds
- MRV & Administration
 - Affect the degree of GHG emissions reduction achievable
 - Affect the amount of revenues raiseable
 - Affect sectors, industries concerned

SCOPE OF THE TAXATION


- Targeting fuels
 - o India: only coal
 - Mexico: coal and petroleum
- Targeting direct emissions
 - Chile: emissions from large boilers and turbines (≥ 50MW)
 - Singapore...
- GHG emissions to cover
 - Spain: fluorinated gases (F-gases)

GHG emissions in Spain in 2012 (UNFCC)

Total without LULUCF: 340.8 MtCO2-eq

- +20.1% since 1990
 - CO2: 81.2%
 - CH4: 9.5%
 - N2O: 7%
 - HFCs/PFCs/SF6: 2.3%

Emission of F-GHGs in Spain 1995-2014 (Source:

POINTS OF REGULATION

Tanker truck

CRUCIAL FACTORS

- Actors responsive to the signal price
- Administrative and MRV

UPSTREAM

Producers and Importers: France | Ireland | Mexico |

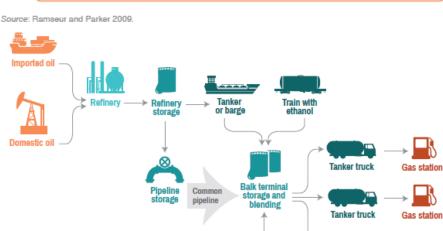
Norway...

Fuel refiners: South Africa Mine mouth: India | Japan

MIDSTREAM

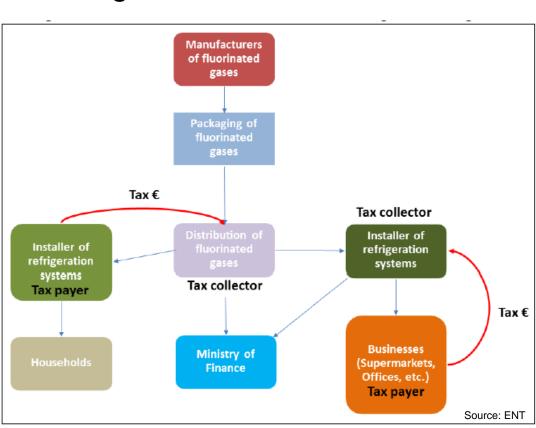

Distributors: France | Ireland | Spain (F-gases)

Fuel supplier: Norway


HFC, PFC importers: Norway | Spain Electricity utilities: UK | South Africa

DOWNSTREAM

Industrial facilities: South Africa


UPSTREAM

LEGAL ENTITY RESPONSIBLE FOR TAX PAYMENT

- Depend on the scope
- Depend on the point of regulation

Schematic view of the carbon tax (F-gases) in Spain

THRESOLDS

Minimum level of activity that will trigger responsibility for paying tax

CRUCIAL FACTORS:

- Proportion of emissions attributable to small emitters
- Cost of reporting / tax amount
- Capabilities of private actors and regulators
- Distortion of competition
- Chile: Midstream tax on electricity generators with min. capacity of 50MW.

MRV & ADMINISTRATION

Key considerations:

- Ability to measure, report and verify emissions
- Cost and efforts associated with MRV

IDEAL SITUATION: CT applied to the sectors at the most environmentally effective point

Targeting fossil fuels:

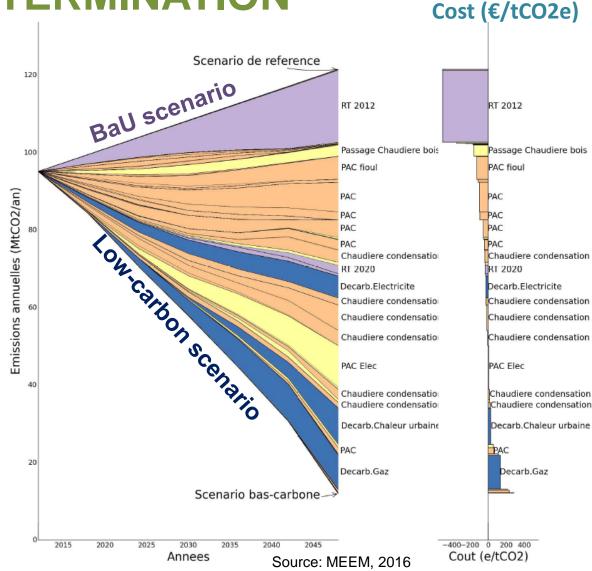
- Advantage of allowing the CT to "piggyback" on existing customs and excise taxes
- Number of entities: point of regulations in most cases upstream and/or midstream (downstream in case of large facilities that are registered taxpayers)
- Management of exemptions

Targeting directs emissions:

- Ability to accurately monitor emissions
- Number of entities involved
- Capacity to M&R emissions
- Availability of preexisting systems

TAXE RATE DETERMINATION

Approach to set the tax rate


- Social cost of carbon approach
- Abatement target approach (Australia)
- O Revenue target approach (Chile/ Education reforms funding)
- Benchmarking approach
- Political negotiation

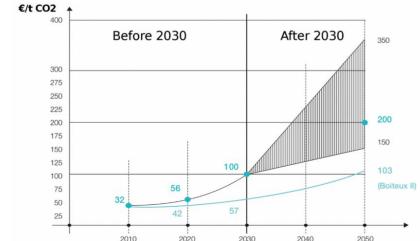
Tax rate adjustment in the years following the initial implementation

- Static carbon tax rate
- Gradually increasing carbon tax rate
- Matching with social cost of carbon
- Adjustment formula
- o Periodic review
- Ad hoc political approach

TAXE RATE DETERMINATION

Dynamic curve of abatement costs with a long term objective — residential sector in France

CARBON TAX DESIGN: TAXE RATE


CARBON TAX RATE IN FRANCE (1/2)

- **2001:** Commission chaired by M. Boiteux €100 (2008 euros) per ton by 2030
- 2008: Commission chaired by A. Quinet decided upon a CO2 price of €100 (2008 euros) per ton by 2030, adopting a adopting a cost-efficient approach to hitting emissions reduction targets by 2050.
- Starting price €32 (2008 euros) per tCO2eq (consistent with the recommendation from the 2001 commission)
- From 2010 to 2030: +5.8%/year

and €100 by 2030 (2015 euros).

2014: Carbon tax (incorporated into the domestic taxes on fossil fuels) adopted at €7/tCO2eq, €14.5/ tCO2eq in 2015 and €22/tCO2eq in 2016 [€30.5/tCO2eq in 2017] 2015: Energy Transition and Green Growth

Act sets a carbon price target of €56 for 2020

Trajectory for carbon pricing recommended by the commission chaired by A. Quinet (2008). Source: France Stratégie

2018: The 2018 Finance act revises the carbon pricing trajectory as follow:

bearborn prioring trajectory ac reliew:			
2018	€ 44.6		
2019	€55		
2020	€65.4		
2021	€75.8		
2022	€86.2		

CARBON TAX RATE IN FRANCE (2/2)

€44.6/tCO2eq in 2018 (VAT ex.)

Domestic consumptions taxes on energy products refer to:

- Domestic consumption tax on energy products (TICPE)
- Domestic consumption tax on natural gas (TICGN)
- Domestic consumption tax on coal (TICC)

Domestic consumption taxes collected by General Directorate of Customs and Excise (DGDDI) when the products are made available for consumption on the domestic market.

Evolution of the Domestic consumption taxes on energy products between 2013 and 2017 (Source: MTES, 2017)

VAT excluded	2013	2014 (1er avril)	2015	2016	2017
Gaz naturel (€/MWh PCS)					
- ménages	exemption	1,27	2,64	4,34	4,88
- professionnels	1,19	1,27	2,64	4,34	5,88
Charbon (€/MWh)	1,19	2,29	4,75	7,21	9,99
Gazole (c€/l)	42,84	42,84	46,82	49,81	53,07
Essence E5 (c€/I)	60,69	60,69	62,41	64,12	65,07
Essence E10 (c€/l)	60,69	60,69	62,41	62,12	63,07
Fioul domestique (c€/l)	5,66	5,66	7,64	9,63	11,89
Fioul lourd (c€/kg)	1,85	2,19	4,43	6,88	9,54

INSTITUTIONS

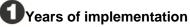
- Institutional arrangements
 - Tax liability
 - Tax administration
 - Tax enforcement
- Procedures
 - MRV
 - Tax assessment and payment
 - Claiming rebates
 - Audit and inspection
 - Investigation and prosecution
 - Offsets and specific exemptions
 - Carbon tax rules revisions

REVENUES USE

- Revenue neutrality
 - Rebates to households or businesses
 - Reductions in other taxes
- Expanded public spending
 - General budget
 - Earmarks
 - Debt reductions
- Other: finance offsets

REVENUES GENERATED BY CARBON TAX

US\$ 21,090M in 2017


 46% of revenues allocated for lowcarbon transition projects

44% of revenues poured in general

budget

6 % for tax reduction

 4% for rebate to household/business

Carbon tax since 2013

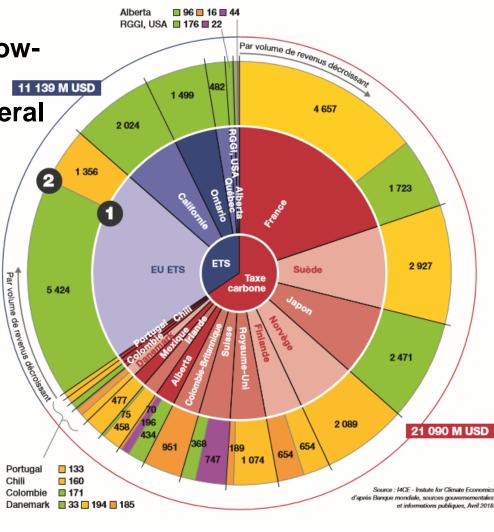
Carbon tax between 2008 and 2013

Carbon tax before 2007

Emissions trading system since 2013

Emissions trading system between 2008 and 2013

Emissions trading system before 2007


2Revenues used

Earmarked

General budget

Reduction in other taxes

Rebate to household/business

REVENUE USE

FRANCE

2017: €5,600M (€300M in 2014)

- 3/4 of the revenues contribute to financing "tax credits for encouraging competitiveness and employment" (labor taxes)
- 1/4 used for specific renewable energy/low carbon purposes and taxaffected groups

SPAIN

2015: €6M (€31M in 2014)

100% general budget

JAPAN

2017: US\$ 2,400M

 100% used to promote low-carbon technologies, EE improvements and renewable energy

CHILE

2017: US\$ 160M

100% general budget with the ambition to improve the education system

AGENDA

1. DEFINING A CARBON TAX

2. CARBON TAX DESIGN

3. UNWANTED EFFECTS: THE MITIGATION MEASURES

UNWANTED EFFECTS

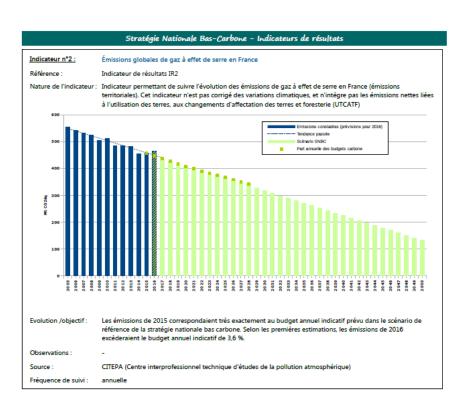
Carbon tax designed to alter the economic costs of certain behaviors that produce GHG emissions.

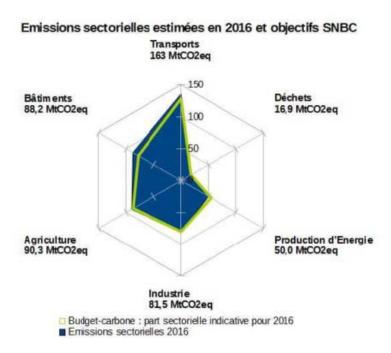
- Carbon leakage Increase in emissions in other jurisdiction that do not have equivalent emission-reduction policies.
- International competitiveness increase inputs costs which put covered firms (or sectors) at a competitive disadvantage.
- Distributional impacts unfair or uneven distribution of the carbon tax cost
 - Income groups: energy poverty / increase of energy share in low-income household budget, increase of transport budget in rural areas compared with urban areas.
 - Geographic regions: energy poverty in regions with harsh climatic conditions / decrease of competitiveness in regions with high concentration of emission-intensive industries.
- ⇒ Understand the nature of the effects
- ⇒ Assess probability of materializing
- ⇒ Define and create effective policy to address

UNWANTED EFFECTS

ADDRESS UNWANTED EFFECTS

Unwanted effect	Remedial measures
Leakage	 Reducing carbon tax payments: exemptions, reduced tax rates, rebates, offsets. Support measures: reduce the overall financial burden of entities subject to the CT while leaving the signal price to reduce emissions unaffected. Border adjustments and consumptions-based taxation Tax-coordinating measures
Distributional risks	 Reducing carbon tax payments: exemptions, reduced tax rates, rebates Support measures: flat payments, (non carbon) tax reductions
International competitiveness	 Reducing carbon tax payments: exemptions, reduced tax rates, rebates, offsets. Support measures: support programs, output-based rebates Border adjustments and consumptions-based taxation Tax-coordinating measures


Thank you!



FRANCE FAILS TO REDUCE GHG EMISSIONS IN 2016 & 2017

UNWANTED EFFECTS

ADDRESS UNWANTED EFFECTS

Measures to address leakage and distributional risks

Measure	Pros	Cons	Examples
Exemptions	Straightforward to implementTargeted at affected groups	 Negative price signal Difficult to determine appropriate level 	Japan, South Africa, Switzerland
Reduced rates	 Contingent upon emission reduction agreements 	 Risk of domestic legal challenge (non- 	Sweden, France
Rebates on carbon tax payments	 Unlikely to present inter. legal challenges 	exempted industry)Loss of tax revenueContrary to PP Principe	Denmark, Ireland, Finland
Offsets	 Incentive for emission reductions in uncovered sectors Incentivize private investment in emission reductions 	Administratively complexReduced tax revenues	Mexico, South Africa

MRV & ADMINISTRATION

MRV & Administration influence each of the decisions

DECISION	MRV & ADMINISTRATION FACTORS
Sectors and activities	Preexisting systems for monitoring inputs outputs or transactions Preexisting systems for tax collection and administrations Number of participants in different sectors Emissions factors in different sectors
Point of regulation	Number of emitters at different points of taxation Preexisting MRV or tax administration at different points of taxation Capacity of emitters to undertake M&R of emissions
Level of reporting	Access of different entities to data for M&R
Thresholds	Share of small emitters in covered sectors Capacity of emitters to undertake M&R of emissions M&R their emissions for tax reporting purposes or only fuel use/sales?

UNWANTED EFFECTS

ADDRESS UNWANTED EFFECTS

Measures to address leakage and distributional risks

Measure	Pros	Cons	Examples
Output- based rebates	Strong leakage protectionRetain price signal	 Uncertain cost to public budget Significant MRV Reduce incentive to shift to other products 	Sweden
Support programs	 Popular w/h industry groups Retain signal price Offer additional emission reduction incentive Flexible in design 	Costly to public budget	South Africa, Ireland, Japan, Switzerland
Other tax reductions	Retain price signalPotential for net positive effect on business and economy	Cost to public budgetDifficult to target directly at affected entities	France
Flat payments	 Retain price signal Simple to claim Popular with general public Potential for net positive social and eco. Benefits 	Cost to public budget	

UNWANTED EFFECTS

ADDRESS UNWANTED EFFECTS

Measures to address leakage only

Measure	Pros	Cons	Examples
Border carbon tax adjustments	 Maintain price signal for domestic industry Prevent free-riding (companies from non taxing jurisdictions) No pressure on public budgets 	 Politically unpopular (risk damaging international relations / WTO) Administratively challenging Potential negative impacts on importers 	California ETS
Tax- coordinating measures	 Retain domestic price signal Leverages domestic carbon price to encourage carbon pricing in partner jurisdictions No domestic administration needs 	Difficult to negotiate across many countries	