Joint Crediting Mechanism Approved Methodology TH_AM012 "Energy Saving by Installation of an Evaporator with Mechanical Vapor Recompression"

A. Title of the methodology

Energy Saving by Installation of an Evaporator with Mechanical Vapor Recompression, Ver.01.0

B. Terms and definitions

Terms	Definitions		
Evaporator	An evaporator is a device used in a process turning liquid form in a solution		
	into its vapor to obtain a solution with high concentration.		
Mechanical	Mechanical vapor recompression is an energy recovery method which		
vapor	boosts low pressure suction vapor generated in an evaporator with a		
recompression	mechanically driven compressor and uses it again as a heating source in an		
(MVR)	evaporator to heat a liquid such as an inlet solution.		
Thermal vapor	Thermal vapor recompression is a process which mixes the low-pressure		
recompression	suction vapor generated in an evaporator with a supplied new steam and		
(TVR)	increases the pressure of the mixed vapor by an ejector to heat a liquid such		
	as an inlet solution.		
Suction ratio	Suction ratio is the indicator of the efficiency for an ejector used in TVR.		
	It is defined as the amount of recovered vapor per the amount of new steam.		

C. Summary of the methodology

Items	Summary
GHG emission reduction	Waste heat recovery by installing an evaporator with mechanical
measures	vapor recompression.
Calculation of reference	Reference emissions are calculated by steam consumption of
emissions	reference evaporator, heating value of the steam, efficiencies of
	the project boiler and CO ₂ emission factor of fuel for the boiler.
Calculation of project	Project emissions are calculated by electricity consumption and

emissions	steam consumptions by project evaporator and CO ₂ emission	
	factors for electricity and steam consumed.	
Monitoring parameters	Total amount of inlet solution to evaporator	
	• Total amount of evaporation from supplied solution by the	
	project evaporator	
	Project steam consumption by project evaporator	
	Electricity consumption of project evaporator	

D. Eligibility criteria

This methodology is applicable to projects that satisfy all of the following criteria.

Criterion 1	The	project	installs	evaporator(s)	which	applies	mechanical	vapor
	recor	npression	ι.					

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
Consumption of steam supplied from steam generator by reference	CO ₂	
evaporator		
Project emissions		
Emission sources GHG types		
Consumption of steam supplied from steam generator by project	CO ₂	
evaporator		
Electricity consumption of project evaporator	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated by multiplying reference steam consumption, heating value and CO_2 emission factor of fuel for the boiler. The reference steam consumption is determined by the theoretical formula for the steam consumption of reference evaporator which applies thermal vapor recompression. In order to secure net emission reductions in this methodology, the reference emissions are conservatively calculated in the following manners.

-Setting inlet water temperature for the steam generation at 38.5 degree Celsius which is derived from the highest monthly average atmospheric temperature in Thailand -Setting the suction ratio at 1.2 by taking the highest value within the range of values applied to the existing evaporator in the market

In addition, possible emissions from auxiliary equipment which cools non-recovered vapor in the reference system are not taken into account for calculating the reference emissions.

F.2. Calculation of reference emissions

	$RE = \frac{\sum SC_{RE,i,p} \times (h_{steam,i} - SPH \times T_{inlet})}{\sum 1} \times EE$
	$KL_p = \frac{1000}{1000} \wedge \frac{1}{\eta_{PJh}} \wedge LT_{fuel}$
RE_p	: Reference emissions during the period $p [tCO_2/p]$
$SC_{RE,i,p}$: Reference steam consumption by the reference evaporator i during the period
	<i>p</i> [<i>t</i> / <i>p</i>]
h _{steam,i}	: Specific enthalpy of supplied steam to the project evaporator i [MJ/t]
SPH	: Specific heat capacity of water ¹ [MJ/($t \cdot K$)]
Tinlet	: Inlet water temperature for the steam generation [degree celsius]
η_{PJh}	: Efficiency of project boiler for steam supply [-]
EF_{fuel}	: CO_2 emission factor for the fuel consumed by the project boiler for heating
	energy generation [tCO2/GJ]
	$\sum s_{C} = -\sum \left(EV_{tot,i,p} \times LH_{EV,i} \right) - FL_{IN,i,p} \times SPH \times (T_{LS,i} - T_{EV,i})$
	$\sum SC_{RE,i,p} = \sum LH_{HT,i} \times (SR+1)$
$EV_{tot,i,p}$: Total amount of evaporation from supplied solution by the project evaporator i
	during the period $p [t/p]$
$LH_{EV,i}$: Specific latent heat of the evaporation temperature of solution at the project
	evaporator i [MJ/t]
SPH	: Specific heat capacity of water ¹ [MJ/($t\cdot K$)]
$T_{LS,i}$: Temperature of the supplied solution to the project evaporator i [degree
	Celsius]
$T_{EV,i}$: Evaporation temperature of the solution at the project evaporator i [degree
	Celsius]
$LH_{HT,i}$: Specific latent heat of the heating temperature of the supplied vapor to the
	project evaporator i[MJ/t]

SR : Suction ratio of ejector in the reference evaporator with thermal vapor recompression [-]

 $FL_{IN,i,p}$: Total amount of inlet solution to the evaporator *i* during the period *p* [t/p]

¹ This methodology may apply the specific heat capacity of water instead of specific heat capacities of solution.

G. Calculation of project emissions

$$PE_{p} = \sum EC_{PJ,i,p} \times EF_{elec} + \frac{\sum SC_{PJ,i,p} \times (h_{steam,i} - SPH \times T_{inlet})}{1000} \times \frac{1}{\eta_{PJh}} \times EF_{fuel}$$

$$PE_{p} : Project emissions during the period p [tCO_{2}/p]$$

$$EC_{PJ,i,p} : Electricity consumption of the project evaporator i during the period p [MWh/p]$$

$$EF_{elec} : CO_{2} emission factor for consumed electricity [tCO_{2}/MWh]$$

$$SC_{PJ,i,p} : Project steam consumption by the project evaporator i during the period p [t/p]$$

$$h_{steam,i} : Specific enthalpy of supplied steam to the project evaporator i [MJ/t]$$

$$SPH : Specific heat capacity of water [MJ/(t \cdot K)]$$

$$T_{inlet} : Inlet water temperature for the steam generation [degree celsius]$$

$$\eta_{PJh} : Efficiency of project boiler for steam supply [-]$$

$$EF_{fuel} : CO_{2} emission factor for the fuel consumed by the project boiler for heating energy generation [tCO_{2}/GJ]$$

H. Calculation of emissions reductions

Emission reductions are calculated as the difference between the reference emissions and the project emissions, as follows:

$$ER_p = RE_p - PE_p$$

 ER_p : Emission reductions during the period p [tCO_2/p]

- RE_p : Reference emissions during the period p [tCO_2/p]
- PE_p : Project emissions during the period p [tCO₂/p]

I. Data and parameters fixed *ex ante*

The source of each data and parameter fixed ex ante is listed as below.

Parameter	Description of data	Source
EF _{elec}	CO ₂ emission factor for consumed electricity	Case 1)
	[tCO ₂ /MWh].	[Grid electricity]
	When the project evaporator consumes only 1) grid	The most recent value
	electricity, 2) captive electricity or 3) electricity	available at the time of
	directly supplied from other sources (e.g.	validation is applied and
	independent power producer (IPP), small power	fixed for the monitoring
	producer (SPP) and very small power producer	period thereafter. The data
	(VSPP)) to the project site, the project participant	is sourced from "Grid
	applies the CO ₂ emission factor respectively.	Emission Factor (GEF) of
	When the project evaporator may consume	Thailand", endorsed by
	electricity supplied from more than 1 electric source,	Thailand Greenhouse Gas
	the project participant applies the CO ₂ emission	Management Organization
	factor with the lowest value.	(TGO) unless otherwise
		instructed by the Joint
	[CO ₂ emission factor]	Committee.
	Case 1) Grid electricity	
	The most recent value available from the source	Case 2)
	stated in this table at the time of validation	[Captive electricity]
		For Option a)
	Case 2) Captive electricity including	Specification of the captive
	cogeneration system	power generation system
	EF_{elec} is determined based on the following	provided by the
	options:	manufacturer (η_{elec} [%]).
	a) <u>Calculated from its power generation efficiency</u>	CO_2 emission factor of the
	$(\eta_{elec} [\%])$ obtained from manufacturer's	lossil luel type used in the
	specification. The newer generation efficiency based on lower	sustem (FF
	hasting value (LHV) of the captive power	[tCO ₂ /GII]
	generation system from the manufacturer's	
	specification is applied:	For Option b)
	$EF_{gen} = 3.6 \times \frac{100}{\eta_{elec}} \times EF_{fuel}$	Generated and supplied electricity by the captive power generation system $(EG_{PJ,p} [MWh/p])$. Eucl amount consumed by
	b) Calculated from measured data	r der untount consumed by

Parameter	Description of data	Source	
Parameter	Description of dataThe power generation efficiency calculated frommonitored data of the amount of fuel input for powergeneration ($FC_{PJ,p}$) and the amount of electricitygeneration ($FC_{PJ,p}$) and the amount of electricitygenerated ($EG_{PJ,p}$) during the period p is applied.The measurement is conducted with the monitoringequipment to which calibration certificate is issuedby an entity accredited under national/internationalstandards; $EF_{elec} = FC_{PJ,p} \times NCV_{fuel} \times EF_{fuel} \times \frac{1}{EG_{PLp}}$	Sourcethe captive powergeneration system ($FC_{PJ,p}$ [mass or volume/p]).Net calorific value(NCV_{fuel} [GJ/mass orvolume]) and CO2emission factor of the fuel(EF_{fuel} [tCO2/GJ]) inorder of preference:1) values provided by the	
	 Where: NCV_{fuel}: Net calorific value of consumed fuel [GJ/mass or volume] Note: In case the captive electricity generation system meets all of the following conditions, the value in the following table may be applied to <i>EF_{elec}</i> depending on the consumed fuel type. The system is non-renewable generation system Electricity generation capacity of the system is less than or equal to 15 MW 	 fuel supplier; 2) measurement by the project participants; 3) regional or national default values; 4) IPCC default values provided in tables 1.2 and 1.4 of Ch.1 Vol.2 of 2006 IPCC Guidelines on National GHG Inventories. The default value is applied. 	
	fuel typeDiesel fuelNatural gas EF_{elec} $0.8 *_1$ $0.46 *_2$ *1 The most recent value at the time of validation is applied.*2 The value is calculated with the equation in the option a) above. The lower value of default effective CO2 emission factor for natural gas (0.0543tCO2/GJ), and the most efficient value of default efficiency for off-grid gas turbine systems (42%) are applied.	diesel fuel] CDM approved small scale methodology: AMS- I.A. [Captive electricity with natural gas] 2006 IPCC Guidelines on National GHG Inventories for the source of EF of natural gas. CDM Methodological tool	
	Case 3) Electricity directly supplied from other		

Parameter	Description of data	Source
	sources including cogeneration system	"Determining the baseline
	EF_{elec} is determined based on the following	efficiency of thermal or
	options:	electric energy generation
	a) The value provided by the electricity supplier	systems version 02.0" for
	with the evidence;	the default efficiency for
	b) The value calculated in the same manner for the	off-grid power plants.
	option a) of 2) captive electricity as instructed	
	above;	Case 3)
	c) The value calculated in the same manner for the	supplied from other
	option b) of 2) captive electricity as instructed	sources including
	above;	cogeneration system]
	When the project evaporator may consume	For Option a)
	electricity supplied from more than 1 electric source,	The evidence stating information relevant to the
	the project participant applies the CO ₂ emission	value of emission factor
	factor with the lowest value.	(e.g. data of power
		generation, type of power
		period of time).
η_{PJh}	Efficiency of the project boiler for steam supply. If	Specifications of the
	multiple boilers are installed, the most efficient	project boiler from
	value is applied.	the quotation.
		*
	In case that the efficiency cannot be identified, one	[Default value]
	of the following default values is applied according	"Determining the baseline
	to the fuel used for the boiler.	efficiency of thermal or
		electric energy generation
	Natural gas: 0.92 [-]	systems version02.0" for the default efficiency of
	Oil: 0.9 [-]	project boiler.
		The default values should
		be updated along with the
EF _{fuel}	CO_2 emission factor for the fuel consumed by the	In the order of preference:
	project boiler for heating energy generation	a) values provided by the
	[tCO ₂ /GJ]	fuel supplier;
		b) measurement by the
		project participants;
	In case that the efficiency cannot be identified, one	c) national default values;

Parameter	Description of data	Source
	of the following default values is applied according	d) IPCC default values
	to the fuel used for the boiler.	provided in table 1.4 of
		Ch.1 Vol.2 of 2006 IPCC
	Natural gas: 0.0543 [tCO ₂ /GJ]	Guidelines on National
	Oil: 0.0726 [tCO ₂ /GJ]	GHG Inventories. Lower
		value is applied.
h _{steam,i}	Specific enthalpy of supplied steam to the project	Based on steam table using
	evaporator <i>i</i> [MJ/t]	the values in operating
		manual or a value
	in case that the value applied for this parameter has	napplayed on the control
	occurrence is recorded and stored then start the new	
	monitoring period with the new value as fixed <i>ex</i>	
	ante.	
T _{inlet}	Inlet water temperature for the steam generation.	Thai Meteorological
	The highest monthly average atmospheric	Department (2016)
	temperature in Thailand is applied.	"Climatological Data for
	Default value is set to 38.5 [degree Celsius].	the Period 1981–2010"
		unless otherwise instructed
		by the Joint Committee.
$LH_{HT,i}$	Specific latent heat of the heating temperature of the	Based on steam table
	supplied vapor to the project evaporator i [MJ/t]	using the values in
		operating manual or a
	In case that this parameter has changed, the newly	value displayed on the
	applied value and its date of occurrence is recorded	control panel at factory
	and stored, then start the new monitoring period with	
CD	the new value as fixed <i>ex ante</i> .	X1 1 1 1 C 1
SK	Suction ratio of ejector in the reference evaporator	value derived from the
	Default value is set to 1.2.[.]	value 1.2 should be
	Default value is set to 1.2 [-].	revised if necessary
SPH	Specific heat capacity of water.	revised if necessary.
	Default value is set to 4.18 $[MJ/(t \cdot K)]$	

Parameter	Description of data	Source
$T_{LS,i}$	Temperature of the supplied solution to the project	Operating manual or a
	evaporator <i>i</i> [degree Celsius].	value displayed on the
		control panel at factory
	In case that this parameter has changed, the newly	
	applied value and its date of occurrence is recorded	
	and stored, then start the new monitoring period with	
	the new value as fixed <i>ex ante</i> .	
$T_{EV,i}$	Evaporation temperature of the solution at the	Operating manual or a
	project evaporator <i>i</i> [degree Celsius].	value displayed on the
		control panel at factory
	In case that this parameter has changed, the newly	
	applied value and its date of occurrence is recorded	
	and stored, then start the new monitoring period with	
	the new value as fixed <i>ex ante</i> .	
LH _{EV,i}	Specific latent heat of the evaporation temperature of	Based on steam table using
	solution at the project evaporator i [MJ/t].	the values in operating
		manual or a value
	In case that this parameter has changed, the newly	displayed on the control
	applied value and its date of occurrence is recorded	panel at factory
	and stored, then start the new monitoring period with	
	the new value as fixed <i>ex ante</i> .	

History of the document

Version	Date	Contents revised
01.0	20 September 2021	Electronic decision by the Joint Committee
		Initial approval.