

T-VER-P-TOOL-02-03

Tool to Calculate Emissions from Solid Waste Disposal Sites

Version 01

Entry into force on 1 March 2023

1. Introduction

This document is a tool for calculating greenhouse gas emissions from solid waste disposal sites (SWDS). This includes specifying the method/data source of the parameters to be monitored.

2. Definition

- Managed SWDS a SWDS that has controlled placement of waste (i.e. waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and will include at least one of the following: (i) cover material; (ii) mechanical compacting; or (iii) levelling of the waste. In this tool, a SWDS that does not meet this definition is considered an unmanaged SWDS;
- Municipal solid waste (MSW) a heterogeneous mix of different solid waste types, usually collected by municipalities or other local authorities. MSW includes household waste, garden/park waste and commercial/institutional waste;
- Residual waste a solid waste type with largely homogenous properties. This includes, inter alia, material that remains after the waste is treated, e.g. anaerobic digestate and compost, and biomass residues (by-product, residue or waste stream from agriculture, forestry and related industries);
- Solid waste Material that is unwanted and insoluble (including gases or liquids in cans
 or containers). Hazardous waste is not included in the definition of solid waste. Solid
 waste may include residual wastes;
- Solid waste disposal site: SWDS designated areas intended as the final storage place for solid waste. Stockpiles are considered a SWDS if:
 - 1) Their volume to surface area ratio is 1.5 or larger; and if
 - 2) A visual inspection by the Validation and Verification Body (VVB) confirms that the material is exposed to anaerobic conditions (i.e. it has a low porosity and is moist);
- Stockpile a pile of solid waste (not buried below ground). Anaerobic conditions are not
 assured in a stockpile with low volume to surface area ratios (less than 1.5) because the
 waste may be exposed to higher aeration.

3. Applicability

The tool can be used to determine emissions for the following types of applications:

Application A: The project activity mitigates methane emissions from a specific existing SWDS. Methane emissions are mitigated by capturing and flaring or combusting the methane. The methane is generated from waste disposed of in the past, including prior to the start of the project activity. In these cases, the tool is only applied for an ex-ante estimation of emissions in the project design document (PDD). The emissions will then be monitored during the crediting period using the applicable approaches in the relevant methodologies (e.g. measuring the amount of methane captured from the SWDS);

Application B: The project activity avoids or involves the disposal of waste at a SWDS. An example of the application of this tool is the treatment of municipal solid waste with alternative processes, composting or anaerobic digestion, and is then prevented from being disposed of in a SWDS. The methane is generated from waste disposed or avoided from disposal during the crediting period. In these cases, the tool can be applied for both ex-ante and ex post estimation of emissions. These project activities may apply the simplified approach detailed in 0 when calculating baseline emissions.

4. Determination of greenhouse gas emission.

Calculation of greenhouse gas emissions from Solid Waste Disposal Sites This defines the following computational parameters.

Parameter	Unit	Description
BE _{CH4,SWDS,y}	tCO₂e/yr	Baseline, project or leakage methane missions occurring in year y
PE _{CH4,SWDS,y}		generated from waste disposal at a SWDS during a time period
LE _{CH4,SWDS,y}		ending in year y (where y is a period of 12 consecutive months)
BE _{CH4,SWDS,m}	tCO ₂ e/m	Baseline, project or leakage methane emissions occurring in month
PE _{CH4,SWDS,m}		m generated from waste disposal at a SWDS during a time period
LE _{CH4,SWDS,m}		ending in month m

4.1 Activities that consider greenhouse gas emissions

Туре	Activity
SWDS	Greenhouse gas emissions from methane emissions Solid
	waste disposal at solid waste disposal sites

4.2 Greenhouse gas emissions from solid waste disposal sites

4.2.1 Simplified procedure to determine methane emissions from the SWDS

Calculation of greenhouse gas emissions from a solid waste disposal site and a simple First Oder Decay (FOD) modeling can be performed with the following conditions:

- 1) For projects of application B type, as defined in section 2.2, and which involve solely municipal solid waste, project proponent may use a simplified approach for the determination of baseline methane emissions. Two such approaches are available:
- 1.1) Case 1 No waste composition monitoring; which corresponds to the properties of waste and climate zone is replaced by default values, relieving the project proponents the task of analyzing the composition of waste.
- 1 . 2) Case 2 Reduced waste composition monitoring In this approach, instead of monitoring the composition of the waste in accordance to the waste types j, projects may monitor the total wet weight fraction of organic waste (W_{org,y}). Organic waste includes wood, paper, food waste, textiles and garden waste.

Simplified approaches to the FOD model and their respective simplified calculations are detailed in the appendix.

4.2.2 Procedure to determine methane emissions from the SWDS

There are guidelines as follows.

1) The amount of methane generated from disposal of waste at the SWDS is calculated based on a first order decay (FOD) model¹. The model differentiates between the different types of waste j with respective constant decay rates (k_j) and fractions of degradable organic carbon (DOC_j).

¹ As an approximation, methane generation in the SWDS is described as a function of time according to a first order decay process with rapid, moderate, and slow degrading organic fractions distinguished.

- 2) The model calculates the methane generation occurring in year y (a period of 12 consecutive months) or month m based on the waste streams of waste types j $(W_{j,x} \text{ or } W_{j,i})$ disposed in the SWDS over a specified time period (years or months)
- 3) In cases where at the SWDS methane is captured (e.g. due to safety regulations) and flared, combusted or used in another manner that prevents emissions of methane to the atmosphere, the emissions are adjusted for the fraction of methane captured (f_v).
- 4) The amount of methane generated from disposal of waste at the SWDS is calculated for year y (BE_{CH4,SWDS,y} or PE_{CH4,SWDS,y} or LE_{CH4,SWDS,y}) using equation (1) or for month m (BE_{CH4,SWDS,m} or PE_{CH4,SWDS,m} or LE_{CH4,SWDS,m}) using equation (2). Either of these two approaches may be used to calculate the amount of methane from disposal of waste at the SWDS. All data used to apply the equations should be documented transparently in PDD or the monitoring reports.
- 5) The PDD should also clearly specify the time period (the consecutive years x or months i) in which waste disposal is considered in the calculation. For application A, this time period may begin before the start of the project activity and typically starts when the SWDS starts receiving waste.

The emissions are calculated as follows:

$$BE_{BP,CH4,y} = \varphi_{y} \times (1-f_{y}) \times GWP_{CH4} \times (1-OX) \times \frac{16}{12} \times F \times DOC_{f,y}$$

$$EE_{BP,CH4,y} \times \sum_{x=1}^{y} \sum_{j} (W_{j,i} \times DOC_{j} \times e^{-kj \text{ (m-1)}} \times (1-e^{-kj}))$$
Equation (1)

$$\begin{aligned} \mathsf{BE}_{\mathsf{BRP,CH4,m}} &= \varphi_{\mathsf{y}} \, \mathsf{x} \, (\mathsf{1-f_{\mathsf{y}}}) \, \mathsf{x} \, \mathsf{GWP}_{\mathsf{CH4}} \, \mathsf{x} \, (\mathsf{1-OX}) \, \mathsf{x} \, \underline{\mathsf{16}} \, \mathsf{x} \, \mathsf{F} \, \mathsf{x} \, \mathsf{DOC}_{\mathsf{f,m}} \\ \mathsf{PE}_{\mathsf{BP,CH4,m}} && \mathsf{12} \\ \mathsf{LE}_{\mathsf{BP,CH4,m}} && \mathsf{x} \, \mathsf{MCF_{\mathsf{y}}} \, \mathsf{x} \, \sum_{\mathsf{i}=\mathsf{1}}^{\mathsf{L}} \, \mathsf{(W_{\mathsf{j},\mathsf{i}} \, \mathsf{x} \, \mathsf{DOC_{\mathsf{j}}} \, \mathsf{x} \, \mathsf{e}^{\mathsf{-(k\mathsf{j}/12)} \, (\mathsf{m-1})} \, \mathsf{x} \, (\mathsf{1-e^{\mathsf{-(k\mathsf{j}/12)}}})) \end{aligned} \end{aligned}$$
 Equation (2)

Where, for the yearly model:

 $BE_{CH4,SWDS,y}$ = Baseline, project or leakage methane emissions occurring in year y $PE_{CH4,SWDS,y}$ generated from waste disposal at a SWDS during a time period ending $LE_{CH4,SWDS,y}$ in year y (tCO_2e/yr)

Years in the time period in which waste is disposed at the SWDS,
 extending from the first year in the time period (x = 1) to year y (x = y)

Year of the crediting period for which methane emissions are calculated У (y is a consecutive period of 12 months) $DOC_{f,v}$ Fraction of degradable organic carbon (DOC) that decomposes under the specific conditions occurring in the SWDS for year y (weight fraction) Amount of solid waste type j disposed or prevented from disposal in the $W_{j,x}$ SWDS in the year x (t)

Where, for the monthly model:

BE_{CH4.SWDS.m} Baseline, project or leakage methane emissions occurring in month m PE_{CH4 SWDS m} generated from waste disposal at a SWDS during a time period ending in LE_{CH4.SWDS.m} month m (tCO₂e/m) Month of the crediting period for which methane emissions are calculated m = i Months in the time period in which waste is disposed at the SWDS, extending from the first month in the time period (i = 1) to month m (i = m) $DOC_{f,m}$ Fraction of degradable organic carbon (DOC) that decomposes under the specific conditions occurring in the SWDS for month m (weight fraction) Amount of organic waste type j disposed/prevented from disposal in the $W_{i,i}$ SWDS in the month i (t)

Where, for both the yearly and monthly model:

Model correction factor to account for model uncertainties for year y $\boldsymbol{\varphi}_{\mathsf{v}}$ f_{ν} Fraction of methane captured at the SWDS and flared, combusted or used in another manner that prevents the emissions of methane to the atmosphere in year y GWP_{CH4} Global Warming Potential of methane OX Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in the soil or other material covering the waste) F = Fraction of methane in the SWDS gas (volume fraction) MCF_v = Methane correction factor for year y DOC_i = Fraction of degradable organic carbon in the waste type j (weight fraction) Decay rate for the waste type i (1 / yr) k = Type of residual waste or types of waste in the MSW İ

4.3.1 Determining the parameters required to apply the FOD model

Table 1 summarized how the parameters required in this tool can be determined. This includes the use of default values, one-time measurements or monitoring throughout the crediting period. The selection of the option that can be used depends on whether the tool is used for application A or B.

Table 1. Overview of the option to determine parameters

Parameter	Application A	Application B
$ec{oldsymbol{arphi}_{\scriptscriptstyle y}}$	Project or leakage emissions: default values	
	Baseline emissions: default values	or project specific value estimated yearly
ОХ	Default value	
F	Default value	
DOC _{f,y} or DOC _{f,m}	Default value	In the case of MSW: default value or
		estimated once. In the case of residual
		waste: estimated once
MCF _y	Default values (based on	Monitored for SWDS with a water table
	SWDS type)	above the bottom of the SWDS
		Default values (based on SWDS type)
		for SWDS without a water table above
		the bottom of the SWDS
k _j	Default values (based on waste type)	
$W_{j,x}$ or $W_{j,i}$	Estimated once	Calculated based on monitored data
DOC _j	Default values (based on	Default values or waste specific
	waste type)	value estimated once
f _y	Estimated once	Monitored

1) Determining the model correction factor (ϕ_y)

The model correction factor (φ y) depends on the uncertainty of the parameters used in the FOD model. If project or leakage emissions are being calculated, then φ y = φ default = 1. If baseline emissions are being calculated, then project participants may choose between the following two options to calculate φ y.

Option 1: Use a default value

$$\boldsymbol{\varphi}_{V} = \boldsymbol{\varphi}_{\text{default}}$$

Option 2: Determine $oldsymbol{arphi}_{ ext{y}}$ based on specific situation of the project activity

Undertake an uncertainty analysis for the specific situation of the proposed project activity. The overall uncertainty of the determination of methane generation in year y (V_y) is calculated as follows:

$$V_y = \sqrt{a^2 + b^2 + c^2 + d^2 + e^2 + g^2}$$
 Equation (3)

The factors a, b, c, d, e and g quantify the effect of the uncertainty of different parameters (listed in the second column of Table 2), used in the FOD model, on the overall uncertainty of the methane generation in year y. Project participants shall select for each factor a value within the range provided in Table 2^2 , following the instructions in the table, and justify their selection.

Table 2 Instructions for the selection of values for the factors a, b, c, d, e, and g

Factor	Parameter	Lower value	Higher value	Instructions for selecting the factor
а	W	2%	10%	Use the lower value if solid waste is
				weighed using accurate
				weighbridges. Use the higher value if
				the amount of waste is estimated,
				such as from the depth and surface
				area of an existing SWDS
b	DOC	5%	10%	Use the lower value if the DOC _j is
	,			measured. Use the higher value if
				default values are used
С	DOC _f	5%	15%	Use the lower value if more than 50
				per cent of the waste is rapidly
				degradable organic material or if the
				SWDS is located in a tropical
				climate. Otherwise use the higher
				value

² These uncertainty values are estimated based on the 68 per cent confidence level.

_

Factor	Parameter	Lower value	Higher value	Instructions for selecting the factor
d	F	0%	5%	Use the lower value if more than 50
				per cent of the waste is rapidly
				degradable organic material.
е	MCF _y	0%	50%	Use the lower value for managed
				SWDS. For unmanaged SWDS, use
				the higher value or determine the
				factor as 2/d, where d is the depth of
				the SWDS (in meters)
g	$e^{-kj\times(y-x)}\times(1-e^{-kj})$	5%	20%	The uncertainty values provided
				express the uncertainty for the
				exponential term as a whole. Use the
				lower uncertainty value in the
				following cases:
				(i) Application B: if residual waste is
				disposed at the SWDS and if the
				value of k is larger than 0.2 y-1); and
				(ii) Application A: if the SWDS
				compartments where the project is
				implemented were closed less than
				three years ago. In all other cases,
				use the higher value

 $oldsymbol{arphi}_{\scriptscriptstyle y}$ is then calculated as follows:

$$\varphi_{y} = 1$$
 Equation (4)

For the case that the monthly FOD model is being used (equation (2)), then $m{\phi}_{_{_{\! y}}}$ refers to the year y to which the month m belongs.

2) Determining the amounts of waste types j disposed in the SWDS ($W_{i,x}$ or $W_{i,i}$)

Where different waste types j are disposed or prevented from disposal in the SWDS (for example, in the case of MSW), it is necessary to determine the amount of different waste types

 $(W_{j,x} \text{ or } W_{j,i})$. In the case that only one type of waste is disposed (for example, in the case of a residual waste), then $W_{j,x} = W_x$ and $W_{j,i} = W_i$ and the following procedures do not need to be applied (e.g. waste sampling is not required).

Application A

Calculate W_{j,x} or W_{j,i} based on information from the SWDS owner, administration and from interviews with senior employees. The total amount of waste can be calculated from the SWDS surface area and average depth, assuming a specific weight of 1-1.2 t per cubic meter. If the SWDS has distinct compartments and if the amount of waste per compartment and the exploitation period of a compartment is known, then the amounts of waste for a specific series of years can be obtained. Further historic information on amounts, composition and origin of the waste might be found in SWDS administration documents (e.g. contracts with clients and invoices to clients) or obtained from old business plans or business evaluations

Application B

Determine the amount of different waste types through sampling and calculate the mean from the samples either using equation (5) to determine the value of $W_{j,x}$ for the yearly model or using equation (6) to determine the value of $W_{j,i}$ for the monthly model, as follows:

$$\mathbf{W}_{i,x} = \mathbf{W}_{x} \times \mathbf{P}_{i,x}$$
 Equation (5)

Where:

 $W_{j,x}$ = Amount of solid waste type j disposed or prevented from disposal in the SWDS in the year x (t)

W_x = Total amount of solid waste disposed or prevented from disposal in the SWDS in year x (t)

 $P_{i,x}$ = Average fraction of the waste type j in the waste in year x (weight fraction)

j = Types of solid waste

Years in the time period for which waste is disposed at the SWDS, extending from the first year in the time period (x = 1) to year y (x = y)

$$\mathbf{W}_{j,i} = \mathbf{W}_i \times \mathbf{P}_{j,i}$$
 Equation (6)

Where:

W_{j,l} = Amount of solid waste type j disposed or prevented from disposal in the SWDS in the month i (t)

W_i = Total amount of solid waste disposed or prevented from disposal in the SWDS in month i (t)

P_{i,i} = Average fraction of the waste type j in the waste in month i (weight fraction)

j = Types of solid waste

i = Months in the time period in which waste is disposed at the SWDS, extending
 from the first month in the time period (i = 1) to month m (i = m)

The fraction of the waste type j in the waste for the year x or month i are calculated according to equations (7) and (8), as follows:

$$\mathbf{P}_{\mathbf{j},\mathbf{x}} = \frac{\sum_{n=1}^{\mathbf{ZX}} \mathbf{P}_{\mathbf{n},\mathbf{j},\mathbf{x}}}{\mathbf{Z}_{\mathbf{x}}}$$
Equation (7)

Where:

P_{j,x} = Average fraction of the waste type j in the waste in year x (weight fraction) The average must cover seasonal changes by taking samples at least twice a year (weight fraction).

 $P_{n,j,x}$ = Fraction of the waste type j in the sample n collected during the year x (weight fraction)

Zx = Number of samples collected during the year x

n = Samples collected in year x

j = Types of solid waste

x = Years in the time period for which waste is disposed at the SWDS, extending from the first year in the time period (x = 1) to year y (x = y)

$$\mathbf{P}_{\mathbf{j},\mathbf{i}} = \frac{\sum_{n=1}^{3} \mathbf{P}_{n,\mathbf{j},\mathbf{i}}}{\mathbf{E}(\mathbf{quation}(8))}$$

Where:

P_{i,i} = Average fraction of the waste type j in the waste in month i (weight fraction)

P_{n,j,i} = Fraction of the waste type j in the sample n collected during or recent to month i (weight fraction)

n = The three most recent samples collected during or previous to month i

j = Types of solid waste

= Months in the time period in which waste is disposed at the SWDS, extending from the first month in the time period (i = 1) to month m (i = m)

3) Determining the fraction of DOC that decomposes in the SWDS (DOC $_{\rm f,v}$)

Determining the fraction of DOC that decomposes in the SWDS is as follows:

Application A

$$DOC_{f,y} = DOC_{f,default}$$

Application B

In the case that the tool is applied to MSW, then project participants may choose to either apply a default value ($DOC_{f,y} = DOC_{f,default}$) or to determine $DOC_{f,y}$ or $DOC_{f,m}$ based on measurements of the biochemical methane potential of the MSW (BMPMSW), as follows:

$$DOC_{f,y} = 0.7 \times \underline{12} \times \underline{BMP_{MSW}}$$

$$16 \quad F \times \sum_{j} (p_{j,y} \times DOC_{j})$$
Equation (9)

or

$$DOC_{f,m} = 0.7 \times 12 \times BMP_{MSW}$$
Equation (10)
$$16 \quad F \times \sum_{j} (p_{j,m} \times DOC_{j})$$

Where;

DOC_{f,y} = Fraction of degradable organic carbon (DOC) that decomposes under the specific conditions occurring in the SWDS for year y (weight fraction)

$DOC_{f,m}$	=	Fraction of degradable organic carbon (DOC) that decomposes under the
		specific conditions occurring in the SWDS for month m (weight fraction)
BMP_{MSW}	=	Biochemical methane potential for the MSW disposed or prevented from
		disposal (t CH4/t waste)
F	=	Fraction of methane in the SWDS gas (volume fraction)
DOC_j	=	Fraction of degradable organic carbon in the waste type j (weight fraction)
$P_{j,y}$	=	Average fraction of the waste type j in the waste in year y (weight fraction)
$P_{j,m}$	=	Average fraction of the waste type j in the waste in month m (weight fraction)
j	=	Types of solid waste in the MSW
У	=	Year of the crediting period for which methane emissions are calculated (y
		is a consecutive period of 12 months)
m	=	Month of the crediting period for which methane emissions are calculated

In the case that the tool is applied to a residual waste, then project participants shall determine $DOC_{f,y}$ or $DOC_{f,m}$ based on measurements of the biochemical methane potential of the residual waste type j (BMP_i), as follows:

$$DOC_{f,y} = DOC_{f,m} = 0.7 \times (12/16) \times (BMP_j/(F \times DOC_j))$$
 Equation (10)

Where;

 $DOC_{f,v}$ Fraction of degradable organic carbon (DOC) that decomposes under the specific conditions occurring in the SWDS for year y (weight fraction) $DOC_{f,m}$ Fraction of degradable organic carbon (DOC) that decomposes under the specific conditions occurring in the SWDS for month m (weight fraction) BMP_i Biochemical methane potential for the residual waste type j disposed or prevented from disposal (t CH₄/t waste) F Fraction of methane in the SWDS gas (volume fraction) DOC_i = Fraction of degradable organic carbon in the waste type j (weight fraction) j Residual waste type applied to the tool Year of the crediting period for which methane emissions are calculated у (y is a consecutive period of 12 months) Month of the crediting period for which methane emissions are calculated m

4) Procedure to determine the methane correction factor (MCF_v)

Application A

Application B

In case of a water table above the bottom of the SWDS (for example, due to using waste to fill inland water bodies, such as ponds, rivers or wetlands), the MCF should be determined as follows:

$$MCF_v = MAX [(1-(2/d_v), (h_{w,v}/d_v)]$$
 Equation (11)

Where;

MCF_v = Methane correction factor for year y

 $H_{w,v}$ = Height of water table measured from the base of the SWDS (m)

 d_v = Depth of SWDS (m)

In other situations, the MCF should be selected as a default value (MCF $_y$ = MCF $_{default}$)

5. Monitoring Plan

5.1 Monitoring methodology

- 1) The project developer explain and specify the steps for monitoring the project activity data (Activity data) or verify all measurement results in the project proposal document. including the type of measuring instruments used Person responsible for monitoring results and verifying information Calibration of measuring instruments (if any) and procedures for warranty and quality control Where methods have different options, such as using default values or on-site measurements. The project developer must specify which option to use. In addition, the installation, maintenance and calibration of measuring instruments should be carried out in accordance with the instructions of the equipment manufacturer and in accordance with national standards. or international standards such as IEC, ISO
- 2) All data collected as part of the greenhouse gas reduction monitoring. The data should be stored in electronic file format and the retention period is in accordance with the guidelines set

by the Administrative Organization or the organization's quality system, but the period of time is not less than that specified by the TGO. Must follow the follow-up methods specified in the follow-up Parameter:s specified in Table 5.2.

5.2 Data and parameters to be monitored

Parameter:	fy
Data unit:	-
Description:	Fraction of methane captured at the SWDS and flared, combusted or used in
	another manner that prevents the emissions of methane to the atmosphere in
	year y
Source of data:	Select the maximum value from the following: (a) contract or regulation
	requirements specifying the amount of methane that must be destroyed/used
	(if available) and (b) historic data on the amount captured
Measurement procedures:	-
Monitoring frequency:	For application A: Once for the crediting period (fy = f)
	For application B: Annually
QA / QC procedures:	-
Any comment:	-

Parameter:	W _x or W _i
Data unit:	t
Description:	Total amount of waste disposed in a SWDS in year x or month i
Source of data:	Measurements by project participants
Measurement procedures:	Measure on wet basis
Monitoring frequency:	Continuously, aggregated at least annually for year x or monthly for month i
QA / QC procedures:	-
Any comment:	For application B

Parameter:	$W_{\text{org,x}}$
Data unit:	t
Description:	Total amount of organic waste disposed in a SWDS in year x
Source of data:	Measurements by project participants
Measurement procedures:	Measure on wet basis

Monitoring frequency:	Continuously, aggregated at least annually for year x
QA / QC procedures:	-
Any comment:	Applicable when applying simplified approach "Reduced waste composition
	monitoring" according to the appendix

Parameter:	$p_{n,j,x}$ or $p_{n,j,i}$
Data unit:	-
Description:	Weight fraction of the waste type j in the sample n collected during the
	year x or month i
Source of data:	Sample measurements by project participants
Measurement procedures:	Sample the waste composition, using the waste types j, as provided in the
	table for DOC_{j} and k_{j} , and weigh each waste fraction (measure on wet basis)
Monitoring frequency:	Minimum of three samples every three months
QA / QC procedures:	-
Any comment:	This parameter only needs to be monitored for Application B and if the waste
	includes more than one waste type j. Sampling is not required if the waste
	comprises only one waste type

Parameter:	z_{x}
Data unit:	-
Description:	Number of samples collected during the year x
Source of data:	Project participants
Measurement procedures:	Minimum of three samples every three months
Monitoring frequency:	Continuously, aggregated annually
QA / QC procedures:	The sample size and sampling technique must ensure the sample is
	representative.
Any comment:	This parameter only needs to be monitored for Application B and if the waste
	includes more than one waste type j

Parameter:	d _y
Data unit:	m
Description:	Depth of the SWDS
Source of data:	Project participants
Measurement procedures:	-
Monitoring frequency:	Monitoring well that is also used to measure the height of the water table $(h_{w,y})$

QA / QC procedures:	Monthly, average annual values to be used in the case of application of the	
	yearly model (Equation (1))	
Any comment:	This parameter needs to be monitored to identify whether the SWDS has a	
	water table above the bottom of the SWDS, such as due to using waste to	
	fill inland water bodies, such as ponds, rivers or wetlands. If the SWDS does	
	have a water table above the bottom of the SWDS, then this parameter is	
	used to determine the MCF	

Parameter:	h _{w.y}
Data unit:	m
Description:	Height of the water table in the SWDS
Source of data:	Project participants
Measurement procedures:	Monitoring well
Monitoring frequency:	Monthly, average annual values to be used in the case of application of the
	yearly model (equation (1))
QA / QC procedures:	-
Any comment:	This parameter needs to be monitored to identify whether the SWDS has a
	water table above the bottom of the SWDS, such as due to using waste to
	fill inland water bodies, such as ponds, rivers or wetlands. If the SWDS does
	have a water table above the bottom of the SWDS, then this parameter is
	used to determine the MCF

Parameter:	a, b, c, d, e, g
Data unit:	%
Description:	Effect of the uncertainty of different parameters
Source of data:	Project participants
Measurement procedures:	Using the instructions in Table 2 above
Monitoring frequency:	Annually if the conditions described in the "Instructions for selecting the factor" in Table 3 have changed (e.g. a change in how the weight of the waste is measured). Once for the crediting period, if these
QA / QC procedures:	-
Any comment:	Used in Option 2 for determining the model correction factor

Parameter:	GWP _{CH4}
Data unit:	tCO ₂ e/t CH ₄
Description:	The global warming potential of methane

Source of data:	It uses data from the IPCC Assessment Report produced by the
	Intergovernmental Commission on Climate Change. (Intergovernmental Panel on
	Climate Change or IPCC announced by TGO.
Measurement procedures:	For the preparation of project proposal documents
	 Use the latest GWP_{CH4} value as announced by TGO.
	For monitoring the results of reducing emissions
	- Use the value of GWP _{CH4} as announced by TGO. for estimating the amount
	of greenhouse gases according to the crediting period that has been certified
	for the amount of greenhouse gases.
Monitoring frequency:	-
QA / QC procedures:	-
Any comment:	-

5.3 Data and parameters not monitored

Parameter:	$oldsymbol{arphi}_{ ext{ ext{ ext{ ext{default}}}}$			
Data unit:	-			
Description:	Default value for th	e model correction factor to	account for model	uncertainties
Source of data:	-			
Value to be applied:	For baseline emis factor based on the SWDS is located. Default values Application	Default values for the model correction factor		
	Application A Application B	0.75 0.85	0.75 0.80	
Monitoring frequency:	-			
QA / QC procedures:	-			
Any comment:	The table above is model correction fa	s applicable to Option 1 in actor ($oldsymbol{arphi}$ y)"	the procedure "De	termining the

Parameter:	O _X	
Data unit:	-	
Description:	Oxidation factor (reflecting the amount of methane from SWDS that is oxidize	
	in the soil or other material covering the waste)	

Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventory
Value to be applied:	0.1
Monitoring frequency:	-
QA / QC procedures:	-
Any comment:	When methane passes through the top-layer, part of it is oxidized by methanotrophic bacteria to produce CO2. The oxidation factor represents the proportion of methane that is oxidized to CO2 This should be distinguished from the methane correction factor (MCF) which is to account for the situation that ambient air might intrude into the SWDS and prevent methane from being formed in the upper layer of SWDS

Parameter:	F
Data unit:	-
Description:	Fraction of methane in the SWDS gas (volume fraction)
Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventory
Value to be applied:	0.5
Monitoring frequency:	-
QA / QC procedures:	-
Any comment:	Upon biodegradation, organic material is converted to a mixture of methane
	and carbon dioxide

Parameter:	$DOC_f,default$
Data unit:	weight fraction
Description:	Default value for the fraction of degradable organic carbon (DOC) in MSW that
	decomposes in the SWDS
Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventory
Value to be applied:	0.5
Monitoring frequency:	-
QA / QC procedures:	-
Any comment:	This factor reflects the fact that some degradable organic carbon does not
	degrade, or degrades very slowly, in the SWDS. This default value can only be
	used for:
	(1) Application A; or
	(2) Application B if the tool is applied to MSW
	An alternative to using the default factor is to estimate $DOC_{f,y}$ or $DOC_{f,m}$
	using equations (9), (10) and (11) above

Parameter:	MCF _{default}
Data unit:	-
Description:	Methane correction factor
Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
Value to be applied:	In case that the SWDS does not have a water table above the bottom of the SWDS and in case of application A, then select the applicable value from the following: (1) 1.0 for anaerobic managed solid waste disposal sites. These must have controlled placement of waste (i.e.waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and will include at least one of the following: (i) cover material; (ii) mechanical compacting; or (iii) levelling of the waste; (2) 0.5 for semi-aerobic managed solid waste disposal sites. These must have controlled placement of waste and will include all of the following structures for introducing air to the waste layers: (i) permeable cover material; (ii) leachate drainage system; (iii) regulating pondage; and (iv) gas ventilation system; (3) 0.8 for unmanaged solid waste disposal sites – deep. This comprises all SWDS not meeting the criteria of managed SWDS and which have depths of greater than or equal to 5 meters; (d) 0.4 for unmanaged-shallow solid waste disposal sites or stockpiles that are considered SWDS. This comprises all SWDS not meeting the criteria of managed SWDS and which have depths of less than five meters. This includes stockpiles of
Monitoring frequency:	-
QA / QC procedures:	-
Any comment:	MCF accounts for the fact that unmanaged SWDS produce less methane from a given amount of waste than managed SWDS, because a larger fraction of waste decomposes aerobically in the top layers of unmanaged SWDS. In case of a water table above the bottom of the SWDS, a larger proportion of the SWDS is anaerobic and MCF shall be estimated according to equation (12)

Parameter:	DOC
Data unit:	-
Description:	Fraction of degradable organic carbon in the waste type j (weight fraction)
Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
	(adapted from Volume 5, Tables 2.4 and 2.5)

Value to be applied: For MS

For MSW, the following values for the different waste types j should be applied: **Default values for DOC**;

Waste type j	DOC _j (%wet waste)
Wood and wood products	43
Pulp, paper and cardboard	40
(other than sludge)	
Food, food waste, beverages and	15
tobacco (other than sludge)	
Textiles	24
Garden, yard and park waste	20
Glass, plastic, metal, other inert waste	0

For the following residual waste types, project participants may use or derive default values, as follows:

- (1) For empty fruit brunches (EFB), as their characteristics are similar to garden waste, the value for garden, yard and park waste in the table above may be used as a default
- (2) For industrial sludge, either a value of 9 per cent (% wet sludge) may be used as a default, assuming an organic dry matter content of 35 percent, or alternatively, if the percentage of organic dry matter content is known, then the DOC value may be calculated as follows: DOCj (% wet sludge) = 9 * (% organic dry matter content/35);
- (3) For domestic sludge, either a value of 5 per cent (% wet sludge) may be used as a default, assuming an organic dry matter content of 10 per cent, or alternatively, if the percentage of organic dry matter content is known, then the DOC value may be calculated as follows: DOCj (% wet sludge) = 5 * (% organic dry matter content/10).

If a waste type is not comparable to MSW and cannot clearly be described as a combination of waste types in the table above or if a default value is not available or if the project participants wish to measure DOCj, then project participants should measure DOCj in an ignition loss test according to the procedure in EN 15169 or similar national or international standards. This measurement is only required once for each waste type j and the value determined for DOCj remains valid during the crediting period

Monitoring frequency:	
QA / QC procedures:	

Any comment:	The procedure for the ignition loss test is described in BS EN 15169:2007
	Characterization of waste. Determination of loss on ignition in waste, sludge and
	sediments. The percentages listed in table above are based on wet waste basis
	which are concentrations in the waste as it is delivered to the SWDS. The IPCC
	Guidelines also specify DOC values on a dry waste basis, which are the
	concentrations after complete removal of all moist from the waste, which is not
	believed practical for this situation

Parameter:	k _j						
Data unit:	1/yr						
Description:	Deca	Decay rate for the waste type j					
Source of data:	IPCC	2006	Guidelines for Natio	nal Green	house Gas	Inventories	
	(adap	oted fr	om Volume 5, Table	3.3)			
Value to be applied:	Appl	y the	following default valu	es for the	different wa	aste types j	
	D	efaul	t values for the deca	ay rate (<i>kj</i>)		
				Boreal and Temperate (MAT≦20°C)		Tropical (MAT>20°C)	
	Waste type j		Dry (MAP/ PET <1)	Wet (MAP/P ET >1)	Dry (MAP< 1000m m)	Wet (MAP > 1000 mm)	
	-	ading	Pulp, paper, cardboard (other than sludge), textiles	0.04	0.06	0.045	0.07
		Slow degrading	Wood, wood products and straw	0.02	0.03	0.025	0.035
		Moderately degrading	Other (non-food) organic putrescible garden and park waste	0.05	0.10	0.065	0.17
		Rapidly degrading	Food, food waste, sewage sludge, beverages and tobacco	0.06	0.185	0.085	0.40

	Note: MAT – mean annual temperature, MAP – Mean annual				
	precipitation, PET – potential evapotranspiration. MAP/PET is the ratio				
	between the mean annual precipitation and the potential				
	evapotranspiration. If a waste type disposed in a SWDS cannot clearly				
	be attributed to one of the waste types in the table above, project				
	participants should choose, among the waste types that have similar				
	characteristics, the waste type where the values of DOCj and kj result				
	in a conservative estimate (lowest emissions), or request a revision				
	of/deviation from this methodology. In the case of EFB, as their				
	characteristics are similar to garden waste, the parameter values				
	correspondent of garden waste shall be used. In case of sludge from				
	pulp and paper industry, a conservative value of 0.03 shall be used for				
	all precipitation and temperature combinations				
Monitoring frequency:	-				
QA / QC procedures:	-				
Any comment:	Document in the PDD the climatic conditions at the SWDS site				
	(temperature, precipitation and, where applicable, evapotranspiration).				
	Use long-term averages based on statistical data, where available.				
	Provide references				

Parameter:	BMP_{MSW} and BMP_{j}		
Data unit:	t CH4/t waste		
Description:	Biochemical methane potential (BMP) of MSW or the residual waste type j		
	disposed or prevented from disposal		
Source of data:	Samples		
Value to be applied:	Conduct a fermentation test on a sample of the MSW or the residual waste the is at least 5 0 0 g in weight. The test should be undertaken according to		
	national or international standard, which may need to be adapted to conduct		
	the test on a sample that is 500 g or more in weight. The duration of the		
	fermentation test should be until no further methane is generated (indicating the		
	complete conversion of BMP to methane). Take the average of at least three		
Monitoring frequency:	At least three samples from different batches. Once calculated, the value		
	determined is valid during the crediting period		

QA / QC procedures:	According to the standard followed (or adapted) to measure BMP
Any comment:	The BMP is the basis of estimating $DOC_{f,y}$ and $DOC_{f,m}$ which describes the
	fraction of DOC that degrades under the specific conditions occurring in the
	SWDS (for example the moisture, temperature and salt content of the SWDS).
	For MSW, a default value for $DOC_{f,y}$ and $DOC_{f,m}$ may be used instead of
	measurement of the BMP

6. Reference

CDM Methodological tool:

TOOL04: Emissions from solid waste disposal sites version 08.0

Appendix. Simplified approaches for calculation of emissions from solid waste disposal sites.

Calculation of emissions from a solid waste disposal site and a simple FOD modeling can be performed with the following conditions:

1) For projects of application B which involve solely municipal solid waste, project proponent may use a simplified approach for the determination of baseline methane emissions. Two such approaches are available:

1.1) Case 1 No waste composition monitoring

In this approach, part of equation (1) which corresponds to the property of waste and climate zone is replaced by default values, relieving the project proponents the task of analyzing the composition of waste. The term which may be replaced³ has the unit of tCO₂/tonne dry waste and is:

(1-OX) ×
$$\underline{16}$$
 × F × DOC_{f,y} × $\sum_{x=1}^{y}$ DOC_j × $e^{-kj \times (y-x)}$ × (1- e^{-kj})

Equation (13)

Equation (1) is therefore simplified with only W_x as a monitoring parameter:

$$BE_{CH4,SWDS,y} = \varphi_y \times (1-f_y) \times GWP_{CH4} \times \sum Default_x \times W_x$$
 Equation (14)

The value of Default_x depends on the climate zone and on the year x since the disposal of the waste. The default values have been derived by an analysis of registered projects with verified waste compositions, and the default values are selected to ensure conservativeness of the resulting baseline emissions (using 95% confidence and 10% precision)

-

 $^{^{3}}$ The following assumed values were used in the calculation: OX = 0.1; F = 0.5; DOC_f = 0.5; MCF = 1.

Table 1. Default_x values for simplified procedure

X	Tropical wet	Tropical dry	Boreal/ temperate wet	Boreal/temperate dry
1	0.005800	0.001856	0.003382	0.001399
2	0.004212	0.001724	0.002913	0.001325
3	0.003093	0.001601	0.002511	0.001254
4	0.002275	0.001487	0.002163	0.001188
5	0.001657	0.001381	0.001861	0.001125
6	0.001198	0.001281	0.001599	0.001065
7	0.000867	0.001189	0.001371	0.001008
8	0.000635	0.001103	0.001174	0.000954
9	0.000474	0.001024	0.001004	0.000904
10	0.000362	0.000950	0.000859	0.000855
11	0.000284	0.000881	0.000734	0.000810
12	0.000228	0.000817	0.000629	0.000766
13	0.000189	0.000757	0.000539	0.000725
14	0.000160	0.000702	0.000463	0.000687
15	0.000138	0.000651	0.000399	0.000650
16	0.000122	0.000603	0.000344	0.000615
17	0.000109	0.000559	0.000298	0.000582
18	0.000098	0.000518	0.000259	0.000551
19	0.000090	0.000480	0.000226	0.000521
20	0.000082	0.000445	0.000197	0.000493
21	0.000076	0.000413	0.000173	0.000467

1.2) Reduced waste composition monitoring

In this approach, instead of monitoring the composition of the waste in accordance to the waste types j, projects may monitor the total wet weight fraction of organic waste (W_{org,y}). Organic waste includes wood, paper, food waste, textiles and garden waste. Similarly to the first approach, the term in equation 13 of the appendix is replaced. Equation (1) is therefore simplified:

$$BE_{CH4,SWDS,y} = \varphi_y \times (1-f_y) \times GWP_{CH4} \times \sum_{X=1}^{y} Default_{org,x} \times W_{org,x}$$
 Equation (15)

The value of Default_{org,x} depends on the climate zone. These values were derived by an analysis of registered projects with verified waste compositions, and the Default_{org,x} values are selected to ensure conservativeness of the resulting baseline emissions (using 95% confidence and 10% precision).

Table 2 Default $_{org,x}$ values for simplified procedure

х	Tropical wet	Tropical dry	Boreal/ temperate wet	Boreal/temperate dry
1	0.008263	0.002715	0.004905	0.002000
2	0.006066	0.002516	0.004254	0.001891
3	0.004527	0.002330	0.003686	0.001788
4	0.003324	0.002156	0.003177	0.001691
5	0.002348	0.001995	0.002714	0.001599
6	0.001657	0.001845	0.002305	0.001511
7	0.001185	0.001706	0.001953	0.001429
8	0.000862	0.001577	0.001654	0.001351
9	0.000641	0.001458	0.001402	0.001277
10	0.000489	0.001347	0.001191	0.001207
11	0.000384	0.001246	0.001013	0.001141
12	0.000309	0.001152	0.000864	0.001079
13	0.000256	0.001065	0.000738	0.001020
14	0.000218	0.000985	0.000633	0.000964
15	0.000189	0.000911	0.000544	0.000911
16	0.000167	0.000842	0.000470	0.000862
17	0.000150	0.000779	0.000406	0.000815
18	0.000136	0.000721	0.000353	0.000770
19	0.000124	0.000668	0.000308	0.000728
20	0.000114	0.000618	0.000269	0.000689
21	0.000105	0.000572	0.000237	0.000651

Document information: T-VER-P-TOOL-02-03

Version	Amendment	Entry into force	Description
01	-	1 March 2023	Change document code from TVER-TOOL-
			02-01 Version 01.
01	-	30 November 2022	Initial adoption.